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Preface

In 1898, the English writer H.G. Wells introduced the idea of time travel in
his novel, The Time Machine. Here at the Ikeuchi Laboratory, the University
of Tokyo, we have assembled a group of world-class engineers whose work in
computer vision lets us travel back in time to the 7th century to the roots of our
Japanese culture and to preserve cultural objects through the magic of three-
dimensional digital conversion. The Great Buddha of Nara was originally built
in the seventh century by order of the emperor, but it was burned down twice
during civil wars in Japan. The current Buddha was rebuilt in the sixteenth
century. Using advanced computer vision, computer graphics techniques, and
historic knowledge from documents preserved in the Todaiji temple, we have
reconstructed the Buddha and Buddha palace.

Another example of digital restoration is the work we have done with the
Bayon Temple in Angkor Thom, Cambodia. This temple, which unites the
Buddhist outlook of ancient India with Khmer tradition, is one of the master-
pieces of historic architecture. Unfortunately, the structure is worsening day by
day, and there is a high possibility of its collapsing in the near future. By using
newly developed sensors and software, we have digitized this huge temple and
obtained 3D digital data for restoration purposes.

Why are these restoration projects necessary? Unfortunately, many valuable
objects that form part of our cultural heritage have been decayed by weathering
and natural disasters such as Indonesia’s recent earthquake. Other objects have
been destroyed through man-made disasters such as the Taliban’s destruction
of the great Barmian Buddha in Afghanistan. But we can preserve our irre-
placeable cultural heritage in 3D digital form for future generations using to-
day’s IT technologies. Images derived from 3D digital technology deepen our
understandings of our cultural heritage and increase the identity and dignity of
each nation.

This book presents an overview of the results of research on information and
communication technologies devoted to digital preservation. It summarizes
recent research results accumulated since the publication of our previous book,
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Modeling From Reality. Our new book consists of four parts. Part I introduces
our cutting-edge range sensors for scanning cultural objects. Part II presents
our software algorithm, which integrates a large amount of range data into a
unified mesh model. Part III explains techniques to analyze the color of the
surfaces of cultural objects for preserving their “true surface color.” Part IV
provides examples of how to utilize these digital data for the “time-machine.”
We hope our readers enjoy their journey to this restored world.

Research results presented in this book are supported by three major re-
search projects. We are deeply indebted to three leading program managers
of the projects: Professor Masao Sakauchi of National Institute of Informatics
for the Sin Program, Professor Makoto Nagao of National Library of Japanese
Diets for the CREST program, and Professor Hiroshi Harashima of the Uni-
versity of Tokyo for the LP program for their guidance, management as well
as financial supports. We extend our sincere appreciation to Dr. Joan Knapp,
who revised our text; we could not have produced this book without her de-
voted help. We also thank our secretaries, Ms. Keiko Motoki, Ms. Yoshiko
Matsuura, and Ms. Kaoru Kikuchi for putting our material in order. The cover
of this book was designed by Tetsuya Kakuta. This research was financially
supported in part by the Ministry of Education, Culture, Sports, Science, and
Technology of the Japanese government, and in part by the Japan Science and
Technology Agency.

Katsushi Ikeuchi

Daisuke Miyazaki
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Chapter 1

INTRODUCTION

Katsushi Ikeuchi and Daisuke Miyazaki

Introduction

Currently, a large number of cultural heritage objects around the world are
deteriorating or being destroyed because of natural disasters, such as earth-
quakes and floods, or man-made disasters, such as civil wars and vandalism.
Efforts to physically preserve and maintain these objects are being conducted
all over the world, and these efforts are important and, indeed, essential. On
the other hand, such daily physical efforts cannot stop the sudden loss of price-
less objects, as was the case when the Taliban destroyed the Bamiyan Great
Buddha or when an earthquake struck the Bam ruin in Iran. Thus, we have
to develop methods to record and preserve current states of these reminders of
our culture.

One of the best ways to record and preserve such objects is to obtain digital
3D data of them. 2D pictures have been a common method to record current
appearances of heritage objects. However, 2D pictures, though they are im-
pressive and beautiful, only provide appearances, and do not provide detailed
information. Recent advancements in computer vision techniques enable us to
obtain 3D digital data of these objects. Once these 3D data have been acquired,
they can record 3D shapes of objects permanently and then safely pass these
down to future generations. In addition, such digital 3D data are suitable for
many applications, including simulation and restoration. Multimedia contents
of objects can also be obtained from 3D data, and such digital contents can be
viewed through the Internet from anywhere in the world, without moving the
objects or visiting the sites.

We have been working to develop such digital archival methods by using
computer vision and computer graphics technologies. Similar projects include
Stanford’s Michelangelo Project[2], IBM’s Pieta Project[3], and Columbia’s
project[4], to name a few. Our project has a number of unique features; among
them is its aim to digitize relatively large objects existing in the outdoors, such
as the Kamakura great Buddha, and Cambodia’s Bayon Temple. The size of
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target objects presents several challenges in terms of sensors used for data ac-
quisitions and software to process the large amount of data. Also, our project
aims to develop methods to record photometric information of outdoor objects.
Strong sunlight and other environmental illuminations provide a challenge in
processing photometric information.

This book summarizes our research efforts toward our preservation goal. It
consists of four parts. Part 1 describes various sensors designed to obtain data.
Part 2 contains a collection of papers that describe the geometric pipeline, con-
verting obtained data into a consistent geometric model, through determining
relative relations among digital data and connecting those data into a uniform
representation. Part 3 concerns photometric issues, including how to map color
pictures on a geometric model and how to remove the effect of sunlight in the
pictures obtained. Part 4 reports on the effort to establish a digital museum
to restore and display the original appearance of heritage objects as well as
conduct analyses of obtained data for heritage research.

1. Range Sensor

Part 1 contains papers on range sensors, specially designed in our project for
measuring 3D shapes of cultural heritage objects. The process of obtaining 3D
shape information of objects begins with collecting range data of objects by
using various image/range sensors. Several computer vision techniques, such
as traditional shape-from-X and binocular stereo, provide clouds of points of
range information. Wide varieties of laser range sensors are also commercially
available. On applying these established techniques or devices to objects in our
project, however, we encountered several difficulties and challenges due to the
scale of objects, complex structures of objects, and/or direct sunlight. Thus,
we had to design several new types of sensors for our project.

Banno and Ikeuchi, in Chapter 2, report a balloon sensor, a new type of
moving range sensor that hangs under a balloon. Large-scale objects require
unusual viewpoints, such as very high viewpoints. Traditional scaffold meth-
ods, building scaffolds around the structures and bringing sensors on top of the
scaffolds, do not work well due to the danger in high positions, vibration of the
scaffolds, and inefficiency in bringing the sensors up and down. The balloon
sensor provides freedom to choose any view by simply maneuvering a balloon
to a desired position. This balloon method, however, poses a new challenge:
the sensor swings during the range acquisition, and thus the resulting range
data is distorted. Banno and Ikeuchi proposed to rectify such distorted range
data by combining motion estimation from an image sensor mounted on the
range sensor so that sensor motion predicted from an image sensor is consis-
tent with the distortion of the range data. They introduced three constraints:
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range data, bundle, and smoothness constraints, and derived a minimization
formula to determine the sensor motion and to rectify the range data.

A moving 1D range sensor, referred to as a climbing sensor, was designed
for obtaining range data of narrow corridors and hidden pediments, and is de-
scribed by Ono, Matsui, and Ikeuchi in Chapter 3. Cultural heritage objects
such as the Bayon Temple often have complex structures, with many hidden
narrow corridors, due to modification of the structure during its long history
and for defense purposes against an enemy’s attack. For example, the Bayon
Temple has double corridors around the building, narrow passages connecting
fifty towers, and high surrounding walls. A range sensor prefers orthogonal
views on the target surface for accurate measurement. In narrow areas, one
view only provides limited orthogonal areas due to the distance between the
sensor and the wall; other areas are visible, but heavily inclined. Chapter 3
describes a moving 1D range sensor to obtain orthogonal data along a mov-
ing direction. This type of sensor requires calculating the speed of the sensor
to rectify the sampling intervals between views. Ono et al. developed an al-
gorithm to determine the speed of the sensor using another 1D range sensor
mounted on the orthogonal direction to the first 1D range sensor. The range
images obtained by this second sensor are referred to as epipolar range images,
following from epipolar-image analysis proposed by Bolles in the late 1980s.

Chapter 4 describes a range sensor to measure the surface of transparent or
translucent objects, designed by Miyazaki and Ikeuchi. Some cultural heritage
objects, such as necklaces with gems and traditional tableware, have transpar-
ent or translucent surfaces. The usual types of range sensors cannot measure
shapes of this kind of surface because emitted laser light penetrates the surfaces
from orthogonal directions. Miyazaki and Ikeuchi utilize the reflection from
slanting directions on transparent surfaces. In order to separate the reflection
light from the direct light penetrating and coming through the surface, polar-
ization differences in reflected and direct light are used. This chapter presents
an iterative method to obtain the object shape from analysis of reflected light
obtained from the polarization analysis.

2. Range Data Analysis

2.1 Alignment

Part 2 begins with describing alignment, one of the two major steps in range
data analysis. Each set of range data is obtained from arbitrary sensor locations
and directions. Obtained 3D data is represented with respect to a sensor coor-
dinate system. Usually a set of range data that covers an entire object’s surface
consists of multiple data sets obtained with respect to these relative coordinate
systems. It is necessary to determine relative relations among these sensor co-
ordinate systems. Some hardware, such as GPS, is available to determine the
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sensor coordinate system, but such currently available hardware is not accu-
rate enough. Alignment algorithms determine these relations by comparing
data similarity among possible overlapping areas.

Several simultaneous alignment algorithms are presented in succeeding chap-
ters. Algorithms developed by Nishino and Ikeuchi are presented in Chapter
5, by Oishi and Ikeuchi in Chapters 6 and 7, and by Masuda, Hirota, Nishino,
and Ikeuchi in Chapter 8. Traditional alignment algorithms employ pair-wise
alignment to determine the relative relation between two views, and iteratively
continue this process along the chain of range data to complete the whole set
of range data. When handling a large number of data sets, error gradually ac-
cumulates along the chain, and a large gap may exist locally in the final result.
To avoid error accumulation in a certain local part, the algorithms described
aim to simultaneously determine all alignment relations within a data set for
even distribution of errors among all the relations.

Nishino and Ikeuchi in Chapter 5 propose a robust alignment algorithm.
Traditional alignment algorithms were designed mainly for relatively clean
range data, obtained from indoor objects under controlled environments. On
the other hand, range data obtained from outdoor structures, under direct sun-
light, often contain a relatively large amount of outliers, compared with data
from small indoor objects. Traditional alignment algorithms break down on
being applied to such outlier-contaminated data, because they often employ
a minimization strategy based on the least squares formulation. Nishino and
Ikeuchi in Chapter 5 present a minimization strategy efficient and robust against
outliers by using a conjugate gradient search utilizing M-estimator. For robust-
ness, they also avoid using secondary information, i.e., surface normal, in their
error metric.

Oishi and Ikeuchi in Chapter 6 consider a rapid alignment algorithm for on-
site alignment. The Nishino-Ikeuchi algorithm in Chapter 5 is robust, but the
algorithm is relatively slow. When work is being done onsite, a rapid alignment
algorithm is desirable for data debugging and sensor planning, although this
involves the sacrifice of some robustness. The most time-consuming step in
alignment is to find pairs of data points. Oishi and Ikeuchi utilize a graphics
processing unit, commonly available on recent PCs, for establishing pairs of
data points. As a result, they achieve ten times the rapidity of the previous
Nishino and Ikeuchi algorithm.

Oishi in Chapter 7 also extends the algorithm into a parallel implementation
so as to be able to align a very large data set. Another issue in handling a
large object is the huge number of data sets. The simultaneous algorithm, as
originally designed, requires all range images to be read into memory; even
when the computation is distributed over a PC cluster, the amount of memory
used on each PC is not reduced. For parallel implementation, both time and
memory performance have to be considered.
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Masuda, Hirota, Nishino, and Ikeuchi in Chapter 8 extend the alignment
algorithm to handle data deformation. The previous alignment algorithms, de-
scribed in Chapters 5, 6, and 7, are concerned with rigid-body transformation
parameters: three translation and three rotation parameters. Masuda et al. ex-
tend the algorithm so that it determines not only such rigid transformation
parameters but also various deformation parameters. They model the defor-
mation process using a deformation function with a small number of param-
eters. The minimization process in alignment determines these deformation
parameters as well as rigid-body transformation parameters. Application ar-
eas of this deformation-alignment algorithm include shape parameter determi-
nation of old clay mathematical models using range data, comparison among
old Japanese mirrors, and alignment between ground-based and balloon-sensor
range data.

2.2 Merging

The second half of part 2 describes the step referred to as merging. As
mentioned earlier, each range data set covers only a part of a whole object’s
surface. The previous alignment process determines relative relations among
those partial data sets. Usually, 3D range data are represented as a mesh struc-
ture, connecting 3D data points with arcs, and forming triangular patches. It is
necessary to connect those partial mesh representations into a uniform repre-
sentation of a whole object’s surface. The procedure of interconnecting these
mesh structures is referred to as merging.

Merging is considered as extracting one surface from multiple overlapped
surfaces. In the merging procedure, it is important to make the integration
framework robust against any noise that may be in the scanned range images
and can also be inherited from the registration procedure. Sagawa and Ikeuchi,
in Chapters 9 and 10, merge a set of range images into a volumetric implicit-
surface representation, which is converted to a surface mesh by using a variant
of the marching-cubes algorithm [14]. Unlike previous techniques based on
implicit-surface representations, this method estimates the signed distance to
the object surface by determining a consensus of locally coherent observations
of the surface. Chapter 9 mainly discusses a method to increase computational
and memory efficiency using parallel computing techniques, while Chapter 10
extends the method for considering not only range data but also color informa-
tion.

Merging is also considered as a process to reduce noise for a smoother
surface. Chapters 11 and 12 consider methods to generate a smooth surface
by considering two issues: data error and data lacking. Previously described
methods assume error distributions are evenly distributed in space. Some range
sensors, such as Cyrax, have less accuracy in the depth dimension than in the
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spanning dimensions, because the depth measurement is obtained by a laser
returning a signal while the spanning dimensions are measured with encoders
for mirror motions. Sagawa et. al. in Chapter 11 propose a method to reduce
noise in range data by considering this anisotropic error distribution. Another
issue in data error is how to fill small holes due to small occlusions. We have
to interpolate over such holes for water-tight surfaces. Chapter 12 describes
the method to fill such data holes by considering nearby signed distance fields
and flipping signs of signed distance fields under certain conditions.

3. Photometric Modelling

Photometric modeling, described in Part 3, provides color information about
geometric models. Geometric models generated through range data analysis in
Part 2 provide shape information about the objects. This shape information
is useful for analyzing structures of objects and classifying them, but it is not
enough for displaying them as multi-media contents. Part 3 examines methods
for texturing, mapping such photometric information on geometric models.

One issue in texturing is how to map color pictures on geometric mod-
els while maintaining geometric integrity among color images. Ohkubo and
Ikeuchi in Chapter 13 examine a mapping method for a large-scale object.
When short-distance range sensors can be used, the most promising method
is to calibrate the geometrical relationship between the image sensor and the
range sensor before scanning, using a calibration object. However, this
calibration-based method is accurate only around the position occupied by the
calibration fixture. When a target object is very large, this method becomes
unreliable due to lens distortion. This chapter employs the reflectance image,
provided from a laser range sensor as a side product, as a vehicle for the align-
ment of range images with color images. In addition to this alignment between
reflectance and color images, this paper also considers the simultaneous con-
straints among color images for avoiding error accumulation.

When an object is located outdoors, the color picture taken contains both il-
lumination color and object color. In particular, when the target object is large,
obtaining images takes a long time, and during image-taking, illumination con-
ditions change; thus, the resulting photometric appearances are different from
one part to another part. Such an effect can be removed by taking two color
pictures of the same region under different illumination conditions, compar-
ing them, and removing illumination colors. Kawakami, Tan, and Ikeuchi, in
Chapter 14, focus shadow and non-shadow sub-regions in a single image of a
common color region. This is possible because a shadow region, illuminated
by sky light, and a non-shadow region, illuminated by both sky light and sun-
light, provide two appearances of the same body color region under two differ-
ent illumination conditions. Further, for reliably estimating the true color, they
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included the analysis of noise, and as a result, they produced an effective and
robust algorithm.

The previous method separates illumination and surface reflection using
three channels, RGB color components, whereas incoming light has a continu-
ous spectral power distribution. Ikari, Kawakami, Tan, and Ikeuchi, in Chapter
15, propose a separation method to use this continuous spectral power distribu-
tion. They express illumination power distribution as a linear combination of
three known basis functions. They also express spectral power distribution of
surface reflection as a linear combination of three known basis functions. The
resulting observed spectral power distribution is a product of these two linear
combinations of six known basis functions. The authors set up a minimization
formula to determine six unknown coefficients to the basis functions. They
solve this minimization under three different cases: distribution from two dif-
ferent surface reflections under the same illumination, the same surface under
different illumination conditions, and a surface of dichromatic reflection.

Another important issue in photometric modeling is how to store photomet-
ric information in an effective manner. Appearances of heritage objects and
particularly indoor objects such as gems and gold plates depend on viewing and
light-source directions and light-source color, mainly because of highlights on
the surface. Appearances of highlights are not intrinsic characteristics of her-
itage objects. It is desirable to remove such highlights before archiving heritage
objects, and to separately store those two factors for effective storage. Tan and
Ikeuchi in Chapter 16 define the inverse-intensity chromaticity space to de-
scribe a linear correlation between image and illumination chromaticity. They
derive an algorithm, based on an iterative framework, to generate a highlight-
free image from a single input image. Chapter 17 extends the method to handle
a textured surface. Shibata, Takahashi, Miyazaki, and Ikeuchi push this frontier
further in Chapter 18. First, highlights and body reflections are separated, in
this case using the difference in polarization characteristics of the two reflec-
tion components. Next, these two reflection components are analyzed using
Nayar-Ikeuchi-Kanade reflection models. Extracted information is stored as
parameters of the reflection model.

4. Utilizing Digital Data for Archaeological Investigation

Part 4 presents application examples of obtained digital data. We can cat-
egorize these examples into three classes: (1) analysis, (2) user interface, and
(3) multimedia display.

Chapters 19 and 20 describe uses of digital data for analysis. The Bayon
Temple’s 173 faces are, from the JSA research based on the judgment of artists,
classified into three categories: Deva, Devata, and Asura. Kamakura, Oishi,
and Ikeuchi verify this hypothesis using PCA analysis on their digital data
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in Chapter 19. They also report that there are similarity groups in proxim-
ity areas. They conclude that this may support a hypothesis that there were
multiple worker teams and these worker teams carved those faces in a parallel
manner. Another example of analysis is in the area of photometric analysis.
Illumination simulations often provide powerful evidence for archaeological
investigation. In the research of cultural heritage objects such as wall sculp-
tures and paintings, archaeologist have paid attention mainly to the appearance
of the painting at the time it was created, and have argued about illumination
conditions by observing such heritage objects. Instead of simple observations,
simulations often provide more powerful evidence about illumination condi-
tions. In order to demonstrate the ability of 3D digital data to provide such
information, Masuda, Yamada, Kuchitsu, and Ikeuchi digitized actual shapes
of caves and textured color pictures on the surface of digital models. They then
demonstrated illumination simulation for archaeological investigation using a
3D geometric model from digitization of real caves, as described in Chapter
20. From the simulation, they were able to assert the possibility that the an-
cient artists could work inside the cave in sunlight if they chose the optimum
season and time for work, as opposed to previous assumptions that these artists
must have used artificial light.

Chapter 21 demonstrates the second class of 3D data applications: using
3D data as the interface of a database system. Okamoto, Oishi, and Ikeuchi
propose editing, retrieving, and displaying a system of archeological informa-
tion on a large 3D geometric model. They provide computer graphics models
with various types of archeological information on those models. In order
to efficiently handle large-scale models, they designed a system with multi-
resolution mesh models. Users can associate those mesh models with user-
defined archeological information and access the stored data from the models
with easy mouse actions. They verify the effectiveness of the system with user
study experiments.

Chapter 22 demonstrates the third class of applications: using 3D data for
graphics contents for multimedia display. 3D data can be used on a real-image
background for a mixed reality display. For the seamless integration of vir-
tual and real objects, it is important to achieve consistency of illumination.
Kakuta, Oishi, and Ikeuchi describe a method to represent shading and shad-
owing of virtual objects appropriate for architecture models in outdoor scenes.
They developed a method to create the shadows of the virtual objects in a fast
and efficient manner using a set of pre-rendered basis images and shadowing
planes. They demonstrate the system in Asuka, an ancient capital of Japan.

Another example of multimedia display is explained in Chapter 23. One of
the advantages of obtaining digital data of cultural heritage objects is to modify
those data and display the original appearance of the object. The Nara great
Buddha is one of the most important heritage objects in Japan. Originally the
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Buddha statue was constructed in the 8th century, but was melted down twice
due to Japanese civil wars. Oishi and Ikeuchi demonstrate the creation of the
original appearance of the Buddha and Buddha palace from digital data of the
current Buddha and Buddha palace.
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RANGE SENSOR



Chapter 2

SHAPE RECTIFICATION OF 3D DATA OBTAINED
BY A MOVING RANGE SENSOR BY USING
IMAGE SEQUENCES

Atsuhiko Banno and Katsushi Ikeuchi

Abstract For a large object, scanning from the air is one of the most efficient methods of
obtaining 3D data. We have been developing a novel 3D measurement system,
the Flying Laser Range Sensor (FLRS), in which a range sensor is suspended
beneath a balloon. The obtained data, however, have some distortion due to
movement during the scanning process. Then we propose a novel method to
rectify the shape data obtained by a moving range sensor. The method rectifies
them by using image sequences. We are conducting the Digital Bayon Project, in
which our algorithm is actually applied for range data processing and the results
show the effectiveness of our methods. Our proposed method is applicable not
only to our FLRS, but also to a general moving range sensor.

1. Introduction

We have been conducting some projects to model large scale cultural her-
itage objects such as great Buddhas, historical buildings and suburban land-
scapes [21, 16]. Basically, to scan these large objects, a laser range finder is
usually used with a tripod positioned on stable locations. In the case of scan-
ning a large scale object, however, it often occurs that some part of the object
is not visible from the laser range finder on the ground. In spite of such a dif-
ficulty, we have scanned large objects from scaffolds temporally constructed
nearby the object. However, this scaffold method requires costly, tedious con-
struction time. In addition, it may be impossible to scan some parts of the
object due to the limitation of available space for scaffold-building.

We are now conducting a project [15] to model the Bayon Temple [33] in
Cambodia; the temple’s size is about 150 × 150 square meters with over 40
meters in height. Scanning such a huge scale object from several scaffolds is
unrealistic. To overcome this problem, several methods have been proposed.
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For example, aerial 3D measurements can be obtained by using a laser range
sensor installed on a helicopter platform[31]. High frequency vibration of the
platform, however, should be considered to ensure that we obtain highly accu-
rate results. To avoid irrevocable destruction, the use of heavy equipment such
as a crane should be eschewed when scanning a cultural heritage object.

Figure 2.1. The FLRS and the Bayon Temple

Based upon the above considerations, we proposed a novel 3D measurement
system, a Flying Laser Range Sensor (FLRS)[14]. This system digitizes large
scale objects from the air while suspended from the underside of a balloon
platform (Fig.2.1). Our balloon platform is certainly free from high frequency
vibration such as that of a helicopter engine. The obtained range data are,
however, distorted because the laser range sensor itself is moving during the
scanning processes (Fig.2.2).

In this study, we propose a method to rectify 3D range data obtained by a
moving laser range sensor. Not only can this method be used in the case of our
FLRS, it is also applicable to a general moving range sensor.

In this method based on "Structure from Motion", we use distorted range
data obtained by a moving range sensor and image sequences obtained by a
video camera mounted on the FLRS. The motion of the FLRS is roughly es-
timated only by the obtained images. And then the more refined parameters
are estimated based on an optimization imposing some constraints, which in-
clude information derived from the distorted range data itself. Finally, using
the refined camera motion parameters, the distorted range data are rectified.
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Figure 2.2. An sample snap shot and the distorted range data obtained by the FLRS.

This method is not limited to the case of our FLRS but also applicable to
a general moving range sensor that has smooth motion. In this study, we do
not utilize physical sensor such as gyros, INS and GPS for estimation of self
position and pose.

2. Full Perspective Factorization

Estimations of the shape of an object or of camera motion by using images
are called "Shape from Motion " or "Structure from Motion ", and are main
research fields in computer vision.

The factorization method proposed in [32] is one of the most effective al-
gorithms for simultaneously recovering the shape of an object and the motion
of the camera from an image sequence. Then the factorization was extended to
several perspective approximations and applications [8, 23, 7, 25, 12, 11].

[25] also presented perspective refinement by using the solution under the
para-perspective factorization as the initial value. In [12] a factorization method
with a perspective camera model was proposed. Using the weak-perspective
projection model, they iteratively estimated the shape and the camera motion
under the perspective model.

2.1 Weak-Perspective Factorization

Given a sequence of F images, in which we have tracked P interest points
over all frames, each interest point p corresponds to a single point �Sp on the
object. In image coordinates, the trajectories of each interest point are denoted
as {(ufp, vfp)|f = 1, ..., F, p= 1, ..., P, 2F ≥ P}.

Using the horizontal coordinates ufp, we can define an F × P matrix U .
Each column of the matrix contains the horizontal coordinates of a single point



16 DIGITALLY ARCHIVING CULTURAL OBJECTS

in the frame order, while each row contains the horizontal coordinates for a
single frame. Similarly, we can define an F × P matrix V from the vertical
coordinates vfp.

The combined matrix of 2F×P becomes the measurement matrix as follow.

W =

(
U

V

)
(2.1)

Each frame f is taken at camera position �Tf in the world coordinates. The
camera pose is described by the orthonormal unit vectors �if , �jf and �kf . The
vectors �if and �jf correspond to the x and y axes of the camera coordinates,
while the vector �kf corresponds to the z axis along the direction perpendicular
to the image plane (Fig.2.3).

Figure 2.3. The Coordinate System: �Tf denotes the position of the camera at time of frame f.
The camera pose is determined by three unit basis vectors.

Under the weak-perspective camera model, a single point in the world coor-
dinates �Sp is projected onto the image plane f as (ufp, vfp).

ufp =
f

zf

�if
t · ( �Sp − �Tf ) (2.2)

vfp =
f

zf

�jf
t · ( �Sp − �Tf ) (2.3)

where zf = �kf
t · ( �C − �Tf ) (2.4)

The vector �C is the center of mass of all interesting points. Without loss of
generality, the origin of the world coordinates can be placed at the centroid,
that is �C = 0. Then this means that zf = − �kf · �Tf to simplify the expansion
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of the following formulation. To summarize,{
ufp = �mf

t · �Sp + xf

vfp = �nf
t · �Sp + yf

(2.5)

where �mf =
f

zf

�if , xf = − f

zf

�if
t · �tf

�nf =
f

zf

�jf , yf = − f

zf

�jf
t · �tf

Using that the center of all interest points is the origin,

P∑
p=1

ufp =

P∑
p=1

�mf
t · �sp +

P∑
p=1

xf = Pxf (2.6)

similarly,
P∑

p=1

vfp = Pyf (2.7)

We obtain the registered measurement matrix W̃ , after translation W̃ =
W − (x1 x2 . . . xF y1 . . . yF)t
(1, . . .1) as a product of two matrices M and S.

W̃ = M · S (2.8)

where M : 2F × 3Matrix S : 3× PMatrix

The rows of the matrix M represent the orientation of the camera coordi-
nates axes throughout the sequence, while the columns of the matrix S repre-
sent the coordinates of the interest points in the world coordinates. Both matri-
ces are at most rank 3. Therefore, by using the Singular Value Decomposition
(SVD), we can find the best approximation to W̃ .

2.2 Extension to Full-Perspective Factorization

The above formulation is under the weak perspective projection model,
which is a linear approximation of the perspective model. Next, using an iter-
ative framework, we obtain approximate solutions under the non-linear, full-
perspective projection model.

Under the perspective projection model, the projective equations between
the object point �Sp in 3D world and the image coordinate (ufp, vfp) are written
as

ufp = f
�if

t · ( �Sp − �Tf )

�kf
t · ( �Sp − �Tf )

(2.9)

vfp = f
�jf

t · ( �Sp − �Tf )

�kf
t · ( �Sp − �Tf )

(2.10)
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Replacing zf = − �kf t · �Tf , we obtain the following equations.

(λfp + 1)ufp =
f

zf

�if
t · ( �Sp − �Tf ) (2.11)

(λfp + 1)vfp =
f

zf

�jf
t · ( �Sp − �Tf ) (2.12)

λfp =
�kf

t · �Sp

zf
(2.13)

Note that the right hand sides of Eq.2.11 and Eq.2.12 are the same form
under the weak-perspective model (see Eq.2 and 3). This means, multiplying
a image coordinate (ufp, vfp) by a real number λfp maps the coordinate in the
full-perspective model space into the coordinate in the weak-perspective model
space. Solving for the value of λfp iteratively, we can obtain motion param-
eters and coordinates of interest points under the full perspective projection
model in the framework of weak-perspective factorization.

The entire algorithm of the perspective factorization is as follows:

Input: An image sequence of F frames tracking P interest points.

Output: The 3D positions of P interest points �Sp. The camera position �Tf and
poses �if , �jf , �kf at each frame f.

1 Given λfp = 0

2 Supposing the Equations 2.11 and 2.12, solve for �Sp, �Tf , �if , �jf , �kf and
zf through the weak-perspective factorization .

3 Calculate λfp by Equation 2.13.

4 Substitute λfp into step (2) and repeat the above procedure.

Until: λfp’s are close to ones at the previous iteration.

2.3 Tracking

As input, we need P interest points at each frame of a sequence, which are
tracked identified points in the 3D world. There are several methods to derive
interest points from images [22, 29]. Among them, we adopt Harris operator
[13] and SIFT key [18] for derivation of interest points. SIFT key is robust

against scale, rotation and affine transformation changes. The main reason why
we adopt the method is its stability of points derivation and usefulness of the
key, which has 128 dimensional elements and can be used for the identification
for each point.
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3. Refinement

Without noise in the input, the factorization method leads to the excellent
solution. As a result, the rectified 3D shape through the estimated camera pa-
rameters is valid. Real images, however, contain a bit of noise. Therefore, it is
not sufficient to rectify range data obtained by the FLRS only through the fac-
torization. For the sake of a more refined estimation of motion parameters, we
impose three constraints: for tracking, movement, and range data. The refined
camera motion can be found through the minimization of a global functional.
To minimize the function, the solution by the full-perspective factorization is
utilized as the initial value to avoid local minimums.

3.1 Tracking Constraint

As the most fundamental constraint, any interest point �Sp must be pro-
jected at the coordinates (ufp, vfp) on each image plane. This constraint is
well known as Bundle Adjustment [5]. When the structure, motion and shape
have been roughly obtained, this technique is utilized to refine them through
the image sequence. In our case, the constraint conducts the following func-
tion:

FA =

F∑
f=1

P∑
p=1

((
ufp − f

�if
t · ( �Sp − �Tf )

�kf
t · ( �Sp − �Tf )

)2

+
(

vfp − f
�jf

t · ( �Sp − �Tf )

�kf
t · ( �Sp − �Tf )

)2

)
(2.14)

The minimization of FA leads to the correct tracking of fixed interest points
by a moving camera. However, we can see that the presence of parameters
we are trying to estimate in the denominator makes this equation a difficult
one. We have to seek the optimal solution via some non-linear minimization
techniques. Then, suppose that instead, we consider the following function:

F ′
A =

F∑
f=1

P∑
p=1

((
�kf

t · ( �Sp − �Tf )ufp − f · �if t · ( �Sp − �Tf )
)2

+
(

�kf
t · ( �Sp − �Tf )vfp − f · �jf

t · ( �Sp − �Tf )
)2
)

(2.15)

The term �kf
t · ( �Sp− �Tf) is the depth, the distance between the optical center

of camera f and a plane, which is parallel to the image plane and include the
point �Sp. The cost function FA is the summation of squared distances on the
image plane while the cost function F ′

A is estimated on the plane of the point
�Sp.
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3.2 Smoothness Constraint
One of the most significant reasons for adopting a balloon platform is to be

free from the high frequency that occurs with a helicopter platform [14]. A
balloon platform is only under the influence of low frequency: the balloon of
our FLRS is held with some wires swayed only by wind. This means that the
movement of the balloon is expected to be smooth. Certainly, the movement of
the balloon is free from rapid acceleration, rapid deceleration, or acute change
in course. Taking this fact into account, we consider the following function:

FB =

∫ (
w1

(
∂2 �Tf

∂t2

)2

+ w2

(
∂2qf

∂t2

)2
)

dt (2.16)

Here, �Tf denotes the position of the camera, t is time, w1, w2 are weighted
coefficients, and qf is a unit quaternion that represents the camera pose. The
first term of the above integrand represents smoothness with respect to the
camera’s translation while the second represents smoothness with respect to
the camera’s rotation. When the motion of the camera is smooth, the function
FB becomes a small value.

We implement in practice the following discrete form:

F ′
B =

F∑
f=1

(
w1

(
∂2 �Tf

∂t2

)2

+ w2

(
∂2qf

∂t2

)2

)
(2.17)

3.3 Range Data Constraint

Taking a broad view of range data obtained by the FLRS, the data are dis-
torted by the swing of the sensor. We can find, however, that these data contain
instantaneous precise information locally; that information is utilized for re-
finement of the camera motion.

The FLRS re-radiates laser beams in raster scan order. This means that we
can instantly obtain the time when each pixel in the range image is scanned
because the camera and the range sensor are calibrated. If the video camera is
synchronized with the range sensor, we can find the frame among the sequence
when the pixel is scanned. With the video camera calibrated with the range
sensor, we can also obtain the image coordinate of each interest point in the
3D world with respect to the instantaneous local coordinate.

Considering this constraint, we can compensate the camera motion.
When the range sensor scans interest point �Sp, we can conduct the third

constraint to be minimized as follows:

FC =

P∑
p=1

∥∥ xfp −Rt( �Sp − �Tfp)
∥∥2 (2.18)

Here, the index fp denotes the frame number when the range sensor scans in-
terest point �Sp. It is very significant to note that xfp is the 3D coordinate val-
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ues not described in the sensor-oriented coordinate system but in the camera-
oriented one, which is rewritten based on the range data and camera-sensor
calibration. In practice, we find sub-frame fp by using a linear interpolating
technique for the motion of interest points between frames. The main purpose
of the above constraint is to adjust the absolute scale.

As xfp = (xfp, yfp, zfp), the above function can be rewritten as the stronger
constraint:

F ′
C =

P∑
p=1

((
xfp − �ifp

t · ( �Sp − �Tfp)
)2

+
(
yfp − �jfp

t · ( �Sp − �Tfp)
)2

+
(
zfp − �kfp

t · ( �Sp − �Tfp)
)2
)

(2.19)

3.4 The Global Cost Function
Based on the above considerations, we can understand that the next cost

function should be minimized. Consequently, the weighted sum

F = wAF ′
A + wBF ′

B + wCF ′
C (2.20)

leads to a global function. The coefficients wA, wB and wC are determined
experimentally, and we will discuss them later.

To minimize this function, we employ Fletcher-Reeves method or Polak-
Ribiere method [26, 17, 30], which are types of the conjugate gradient method
(in the next section, we explain the conjugate gradient method briefly). Then,
we use the golden section search to determine the magnitude of gradient di-
rections. For optimization, Levenberg-Marquardt method [19] is generally
employed to minimize a functional value. Levenberg-Marquardt method is
very effective in estimating function’s parameters, especially in fitting a cer-
tain function. However in our function, minimizing the value of F ′

B is not a
parameter fitting problem. All we have to do is to simply decrease F ′

B . There-
fore we adopt the conjugate gradient method.

4. FLRS

FLRS(Flying Laser Range Sensor) has been developed to measure large
objects from the air by using a balloon without constructing any scaffolds (Fig.
2.4).

We have two types of FLRSs. Each FLRS is composed of a scanner unit,
a controller and a personal computer (PC). These three units are suspended
beneath a balloon.

The scanner unit includes a laser range finder, especially designed to be sus-
pended from a balloon. Figure 2.5 shows the interior of the scanner unit. It
consists of a spot laser radar unit and two mirrors. We chose the LARA25200
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Figure 2.4. The FLRS (25m sensor)

and LARA53500 supplied by Zoller+Fröhlich GmbH[2] as laser radar units
because of their high sampling rate. Each laser radar unit is mounted on each
FLRS scanner unit. Two systems equipped with Lara25200 and LARA53500
are respectively referred to as "25m sensor" and "50m sensor". The specifica-
tions of two units are shown in Table 2.1.

Table 2.1. The specifications of the 25m (LARA25200) and 50m (LARA53500) Sensors
25m Sensor 50m Sensor

Ambiguity interval 25.2 m 53.5 m
Minimum range 1.0 m 1.0 m

Resolution 1.0 mm 1.0 mm
Sampling rate ≤ 625,000 pix/s ≤ 500,000 pix/s

Linearity error ≤ 3 mm ≤ 5mm
Range noise at 10m ≥ 1.0 mm ≥ 1.5mm
Range noise at 25m ≥ 1.8 mm ≥ 2.7mm
Laser output power 23 mW 32mW

Laser wavelength 780nm 780nm

Both sensors have the similar mirror configurations. There are two mirrors
inside each unit to give a direction to the laser beam. One is a polygon mir-
ror with 4 reflection surfaces, which determines the azimuth of the beam. In
normal use, the polygon mirror, which rotates rapidly, controls the horizontal
direction of the laser beam. Another is a plane mirror (swing mirror) which de-
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termines the elevation of the beam. The plane mirror swings slowly to controls
the vertical direction of the laser beam.

Figure 2.5. The interior of scanner unit (25m sensor)

The lase beam emitted from the LARA is hit on a surface of the poly-
gon mirror at first. Then the polygon mirror reflects the laser beam onto the
plane mirror. The plane mirror also reflects the beam outside the unit(lower of
Fig.2.5).

The combination of two mirror demonstrate the specifications as in Table 2.

5. Experiments

We have been conducting the "Digital Bayon Project", in which the geo-
metric and photometric information of the Bayon Temple is preserved in dig-
ital form. With respect to the acquisition of the geometric data, large parts of
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Table 2.2. The specifications of the 25m sensor and 50m sensor

25m Sensor 50m Sensor

Angle Resolution
Horizontal 0.05 deg 0.05 deg

Vertical 0.02 deg 0.02 deg
Horizontal field ≤ 90 deg ≤ 90 deg

Vertical field ≤ 30 deg ≤ 30 deg
Scanning period/image ≤ 15 sec ≤ 1 sec

the temple visible from the ground are scanned by range sensors placed on the
ground. On the other hand, some parts invisible from the ground, for example,
roofs and tops of towers, are scanned by our FLRS system.

The left side of Fig.2.6 shows a photo of the scanned area. On the right side
of Fig.2.6, the dense fine model is the correct shape obtained by the Cyrax-
2500 [1] fixed on the ground.

Figure 2.6. A scene for this experiment. Left - a photo of an object; Right - 3D model obtained
by the Cyrax-2500 fixed on the ground.

There are data missing in the model. To fill in the missing pieces of the
model obtained by the sensor on the ground, we utilize our FLRS effectively.
Figure 2.7 shows a sample image of the sequence obtained by the video cam-
era. In this experimental data set, it takes one second for a range image: thirty
pictures are saved in the meantime.

The result is shown in Fig.2.8. The upper shape in Fig.2.8 is the original
one obtained from the FLRS. We can see that the shape is widely deformed.
In the middle of Fig.2.8, the rectified shape by full-perspective factorization is
shown. With respect to motion parameters, the ambiguity in scale is removed
manually. At a glance, the factorization seems to rectify the shape properly. In
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Figure 2.7. A sample shot of the image sequence

detail, however, the distortion in S shape is still left. Especially, the shape of the
entrance is skewed. On the other hand, the lower shape is rectified correctly by
our method. It is clear that the distortion in S shape is removed and the shape
of the entrance is correctly recovered into a rectangle.

To evaluate the accuracy of our shape rectification algorithm, we compare
the rectified shape with other data, which are obtained by a range finder, the
Cyrax-2500, positioned on the ground. Aligning two data sets by using the
conventional ICP algorithm [3] [6], we analyze the overlapping area.

Figure 2.9 indicates the point-to-point distances in the ICP algorithm. The
region where the distances between them are less than 6.0 cm is colored light
gray. The area where the distances are farther than 6.0 cm is displayed in dark
gray. The upper figure shows the comparison between the correct shape and
the original distorted one obtained by the FLRS. The middle one shows the
rectified shape by the full-perspective factorization without ambiguity in scale.
The lower shows the rectified shape by our method.

At a glance, the light gray region is clearly expanded by our rectification al-
gorithm. Some parts of the rectified shape are colored dark gray because of the
lack of corresponding points. Taking account of the fact that the correct shape
of the parts invisible from the ground could not be measured, the proposed
method could rectify the 3D shape correctly.

Table 2.3 shows a quantitative evaluation for our method. This table indi-
cates the ratios of match region and the average distances between the Cyrax’s
model and the above three models. These numbers show that our method in-
creases the match region and bring the distorted model by the FLRS to the
correct one. We can see that our method was able to rectify the FLRS data
properly.
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Table 2.3. The evaluation of the rectified models. (a)The original distorted model. (b)The
rectified model by the full-perspective factorization removing the scale ambiguity manually.
(c)The rectified model by our method.

(a) (b) (c)
match region (%) 37.2 49.8 62.7

error (average) [cm] 20.46 10.55 2.11

Figure 2.10 shows several samples of the method.

6. Conclusions

In this chapter, we have described FLRS system and a proposed method to
rectify 3D range data obtained by a moving laser range sensor.

We described how an outstanding measurement system FLRS was built to
scan large objects from the air. This system allowed us to measure the large
cultural heritage objects by using a balloon. To rectify the distorted shapes
obtained from the FLRS, we proposed a rectification method based on the
"Structure from Motion" techniques by using image sequences.

We utilized distorted range data obtained by a moving range sensor and
image sequences obtained by a video camera mounted on the FLRS. First,
the motion of the FLRS was estimated through full perspective factorization
only by the obtained image sequences. Then the more refined parameters were
estimated based on an optimization imposing three constraints: the tracking,
smoothness and range data constraints. Finally, refined camera motion param-
eters rectified the distorted range data.

This method has shown proper performance and practical utilities.
Our method can be generally applied to a framework in which a range sensor

moves during the scanning process, and is not limited to our FLRS because
we impose only the smooth movement constraint.
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Figure 2.8. The upper figure shows the original distorted shape obtained by the FLRS. The
middle one shows the rectified shape by the full-perspective factorization without ambiguity in
scale. The lower shows the rectified shape by our method.
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Figure 2.9. The upper figure shows the comparison between the correct shape and the original
distorted one obtained by the FLRS. The light gray region indicates where the distance of two
shapes is less than 6.0 cm. The middle one shows the rectified shape by the full-perspective
factorization without ambiguity in scale. The lower shows the rectified shape by our method.
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Figure 2.10. Some sample photos by FLRS (left), the original distorted data sets (center) and
the rectified sets (right)



Chapter 3

THE CLIMBING SENSOR: 3D MODELING

Shintaro Ono, Ken Matsui, and Katsushi Ikeuchi

Abstract In this chapter, we introduce a novel type of 3D scanning system, named ‘Climb-
ing Sensor’. This system has been designed especially for scanning narrow ar-
eas, which are hard or inconvenient to scan by a conventional, commercial scan-
ning system due to its radial laser emission, dimension, and limitation of field
angle in some cases.

Our system equips a moving platform with two 1D range sensors (main and
sub units) on a ladder-style electromotive lift, and it scans the whole target while
it moves downwards and upwards along the ladder. The main unit is used for
scanning the target, which repeats scanning in a perpendicular direction to the
moving direction of the platform. The sub unit is used for localizing the plat-
form, and it repeats the scanning process in a parallel direction. By using the spa-
tiotemporal range scans acquired from the sub unit, we can accurately estimate
the motion of the moving platform, and a correct 3D model can be constructed
from data scanned by the main unit.

We applied this system to the Bayon Temple in Angkor Thom, Cambodia.
The scanning results proved that the system gives an accurate 3D model, and
that the system and the speed of the estimating process are effective.

1. Introduction

3D modeling of cultural heritage objects, especially large-scale and com-
plex ones, involves various difficulties and challenges in observing the objects.
Scanning elevated areas without occlusion is a typical example of these diffi-
culties. An effective solution to this difficulty using a balloon has been pro-
posed in the former chapter. Another issue is scanning narrow and tall or long
areas. The goal of this chapter is to present the design of a novel range sensing
system especially for such areas, to develop a localization algorithm required
for realizing the system, and to apply the system to practical use for digital
archiving of cultural heritage objects.

  OF NARROWAREAS BY USING SPACE-TIME
ANALYSIS
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(a) Defects in the 3D model. (b) Difference of point density.

Figure 3.1. Narrow areas in the Bayon Temple.

In the case of scanning the Bayon Temple at Angkor Thom in the king-
dom of Cambodia, a project in which we have been engaged for several years
[1], the temple contains many narrow areas as passages and hidden pediments
that were historically important for the defense of the temple. During our two
scanning missions in 2003, most parts of the temple were successfully modeled
by using several commercial sensors such as Cyrax 2500[14], Z+F IMAGER
5003[15], and our original sensing system, FLRS (Floating Laser Range Sen-
sor)[2, 4, 5]. However, there still remained quite a few hole-like defects of
range points in the 3D model as Fig. 3.1(a) shows, which are the areas that
cannot reasonably be scanned by conventional systems. Since range sensors
prefer orthogonal views on the target surface for accurate measurement, a sen-
sor whose laser source is fixed when the scanning is going on cannot essentially
solve the problem. In narrow areas, a view from a fixed point provides only
limited orthogonal areas, and other areas are visible with heavy inclination —
leading density and accuracy of range points are extremely deviated depending
on the areas, as shown in Fig. 3.1(b)). These are not the only problems. Cyrax
2500 has a constraint in the width of its field angle, which causes considerable
inefficiency in narrow areas. Although Z+F 5003 can scan the surroundings
in a radial direction, a problem called distance ambiguity occurs. Also, the di-
mension of the device itself compared with the place to set it is a fairly difficult
problem.

In order to model and scan such areas with uniform range point density and
accuracy as far as possible, we developed a moving scanning system, ‘Climb-
ing Sensor,’ a ladder-type laser scanning system. The system is equipped with a
moving platform with a 1D range sensor (line-scanning unit) on a ladder-style
electromotive lift, and it is able to scan the whole target while the platform
moves upwards or downwards along the ladder.
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Figure 3.2. A basic illustration of the Climbing Sensor.

Although the motion of the platform can be regarded as uniform and straight
during a single ascent and descent, our preliminary experiment proved that the
speed value itself can vary among multiple ascents and descents, depending
on how the ladder is set. There are various possible approaches for localizing
the platform. In this instance, we developed an algorithm using another 1D
range scanner mounted on the platform. The range images obtained by this
scanner can be regarded as a kind of spatiotemporal range image, that we can
analyze to determine the motion of the moving platform and create a 3D model
with correct geometry. In the following, first we introduce a notion of the
spatiotemporal range image, and describe the algorithm to localize the moving
platform and obtain an accurate 3D model.

2. Spatiotemporal Range Image

2.1 Basic Design of the System

Since the Climbing Sensor developed in this chapter targets narrow and tall
areas, we introduce a special moving platform with ladder-style guide rails and
an electromotive lift, and put two 1D (line-scan) range sensors on the platform,
a main and a sub unit.

The main unit is used purely for modeling targets. It is laid out on the plat-
form so that its sweeping direction and moving direction become orthogonal.
The sub unit is used for localizing the platform. It is laid out on the platform so
that its sweeping direction and moving direction become parallel, and also the
step bars of the ladder are observed. If the ladder is set vertically, the main unit
repeats horizontal line scanning and the sub unit repeats vertical line scanning.
Fig. 3.2 shows the basic illustration of the Climbing Sensor
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Figure 3.3. A basic idea of spatiotemporal range image.

2.2 Spatiotemporal Range Image

The simplest way to localize the platform is by matching the scanning re-
sults of the sub-scanning unit pairwise per each frame. However, such an ap-
proach cannot avoid accumulation of matching errors. Here, we propose a
more simple, new, and original idea, a spatiotemporal range image[10]. By
using this idea, the moving platform can be localized in a simple way with the
error dispersed. We can avoid error accumulation throughout the whole pro-
cess since this approach contains no matching process, and therefore a more
accurate 3D model can be created.

The Spatiotemporal range image defined here is a kind of range image com-
posed of a set of line-scanning range data. It can be assembled by placing the
line range images next to each other per each frame with appropriate constant
intervals, under the condition that the sweeping direction and moving direction
of the scanning unit are parallel to each other. Fig. 3.3 illustrates the idea of
spatiotemporal range image.

The spatiotemporal range image has some interesting features. It simulta-
neously represents the spatial characters of the targeted scene, which can be
represented as x in Fig. 3.3, and the temporal continuity of the movement,
which can be represented as y. In other words, by looking at the spatiotem-
poral range image along the y axis, one can determine how the sensor was
moving in continuous time. Additionally, range points in the spatiotemporal
range image cluster and compose some planes in most cases, due to the over-
lap of the scanning line and the difference in depth of the targeted scene from
place to place.

The second feature described above implies that it is easy to extract edges
from a spatiotemporal range image. The gradient of the edge m can be rep-
resented as a function of moving speed of the platform V by the following
equation,

m =
Δy
Δx

=
kF0Δt

Δx
=
kF0

V
(3.1)

where the x-y-z coordinate is defined as in Fig. 3.3, i.e., x is a sweeping direc-
tion of scanning, y is a temporal axis, and z is a depth. F0 is the scanning rate
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Figure 3.4. An example of spatiotemporal range image obtained from the Climbing Sensor.

Figure 3.5. Epipolar plane image (EPI).

of the sensor, and k is an interval between each scan in placing them next to
each other along a temporal axis.

Fig. 3.4 is a real example of a spatiotemporal range image. Since the sub
scanner can observe step bars of the ladder, edges can be seen clearly.

2.3 Contrast to EPI

It can be said that the spatiotemporal range image is a range-data version of
the EPI (Epipolar Plane Image)[6, 7]. EPI is a color-data image that appears
on a cutting face of a spatiotemporal volume composed of a sequence of color
images captured by a moving camera, under the condition that the cutting plane
is equal to an epipolar plane between each shot. In other words, it can be
assembled by placing line color images next to each other per each frame,
under the condition that image line and moving direction of the camera are
parallel to each other (Fig. 3.5). EPI analysis is performed for estimating scene
depth where the movement of the sensor is known. In contrast, spatiotemporal
range image analysis is performed for estimating the movement where scene
depth can be acquired by the scanning unit.
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Figure 3.6. Outline of the modeling process.

3. Localizing Algorithm for 3D Modeling

The overall flow of localizing the moving platform and creating the 3D
model is shown in Fig. 3.6. From the spatiotemporal range image prepared
by the sub scanner, geometric edges are extracted and their gradients are cal-
culated. The position of the platform is determined by the gradients, and is
applied to the range image acquired by the main unit for 3D modeling.

3.1 Edge Extraction

We applied filtering by two constraints for extracting geometric edges from
a spatiotemporal range image. One is based on spatial differential, and the
other is based on angles between adjacent range points.

For spatial differential filtering, a simple Sobel filter is used. (Although such
a filter is originally applied to color values in a 2D image, it is applied to depth
values in a range image in this case. As the pixels in a 2D image are indexed as
I(u, v), the points in a spatiotemporal range image are indexed as �pm,n, where
m, n are an index number of the scan line and an index number of the range
point in a specific line, respectively.) For angle-based filtering, whether the
angle between �pm−1,n−�pm,n, �pm+1,n−�pm,n and the angle between �pm,n−1−
�pm,n, �pm,n+1 − �pm,n are within the thresholds is examined.

Points determined as edge points are labeled by clustering.

3.2 Calculating the Speed of the Moving Platform

The speed of the moving platform can be calculated from the gradient of the
edges in the spatiotemporal range image. Considering the mechanism of the
platform, the speed can be assumed as constant since it is moved in one way
by an electromotive motor in the lift.

After labeling edge points, principal component analysis is applied to each
edge. The gradient of the edge can be calculated from the direction of the
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Figure 3.7. Overview of the Climbing Sensor.

primary component, and the moving speed is calculated back by Equation 3.1.
The estimated value of the speed is calculated from every edge. In this system,
in view of its mechanism, it can be considered that edges observed globally
over a longer time period will have higher reliability in regard to the sensor
movement, compared with edges observed locally over a shorter time period.
Therefore, we took the weighted average of the estimated value by the length
of each edge.

4. System Configuration

Fig. 3.7 shows the practical representation of the Climbing Sensor. This
system is able to solve spatial limitations while keeping a sufficient width of
field angle, and to regularize the density of range points to some extent.

4.1 Scanning Units

We chose SICK LMS200[17] for both main and sub scanning units. The
specification is shown in Table 3.1. The reason that we used this is for its light
weight, compactness, and wide scanning angle (FOV) with a sufficient scan-
ning rate compared to the speed of movement of the platform. Especially, its
dimension and weight belong to the smallest and lightest class among com-
mercial laser range sensors, except for custom-designed products. This config-
uration solved the problem of the lack of space for scanning, since the small
platform moves with a wide enough field angle and uniform point density.

4.2 Moving Mechanism

We chose Nobitec Lift NPL-4200[16] for the moving mechanism. The spec-
ification is shown in Table 3.2. This product is a telescopic ladder that can be
expanded up to 3.2m. A power motor winch, which is installed at the foot of
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Table 3.1. Specifications of the LMS200 Scanner.

Scanning principle Time of flight, Line-scan
Range∗ Max. 80m / 32m / 8m
Angular resolution∗ 0.25◦/ 0.5◦/ 1.0◦

Field angle∗ 100◦/ 180◦

Response time∗ 53 / 26 / 13 ms
Measurement resolution 10 mm
System error Typ. ±15mm (in mm-mode, range 1–8m)

Typ. ±4cm (in cm-mode, range 1–20m)
Statistical error (1 sigma) 5 mm (at range≤ 8m, reflectivity ≥ 10%, ≤ 5klux)

Data interface RS-422/RS-232
Transfer rate 9.6 / 19.2 / 38.4 / 500 kBaud
Supply voltage DC 24V ± 15 %
Power consumption Approx. 20W (without output load)
Laser protection class 1 (eye-safe)
Operating ambient temp. 0 – 50◦C

Weight 4.5 kg
Dimensions L156×W155 × H210 mm

Manufacturer SICK AG, Germany
∗Selectable by modes, but constraints exist in combinations.

Table 3.2. Specifications of the Nobitec Lift NPL-4200

Max. weight to ascent 100kgf
Max. height 3200mm
Supply voltage AC100V 50/60Hz
Power consumption 870W
Speed of ascension 25m/min (0.417m/s)
Dimensions H4380×W1210 × D509mm
Manufacturer KSS Corporation, Japan

the ladder, can roll up a wire. The moving platform with the sensing unit is
connected to the wire and can slide along guides on a ladder.

This product is originally designed for lifting heavy loads to a higher place.
It is possible to set the ladder nearly vertical while the platform moves upward
and downward as originally used or to set it nearly horizontal while the plat-
form moves forward and backward, depending on the condition of place and
target for scanning.

Although the rolling speed of the winch is 25m/min according to the speci-
fication sheet, we did not use this value as a moving speed since it varies from
case to case depending on conditions. Using the sub scanner, it is possible to
obtain a more accurate speed of the sensor movement.
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Figure 3.8. Verification of speed constancy of the moving platform.

4.3 Assumptions in Movement

We assume the following in regard to the movement of the platform in our
system:

1 The platform moves in a straight direction.

2 The platform moves at a constant speed.

1. is based on the fact that the platform moves along the guides on the
ladder. The gap between the guide and the platform is several millimeters at
the maximum, which is more minute than the accuracy of the scanning unit.
2. is based on the fact that the movement of the system is driven by an elec-
tric motor, and that its load does not change during one scan since the setting
condition of the ladder is constant.

To verify the second assumption, we recorded the movement of the platform
by setting a video camera on the platform and capturing scale markings on a
measuring tape attached along the ladder. The inclination angle of the ladder
was changed in five levels, from horizontal to 81◦. Fig. 3.8 is the result. Dis-
placements in each scan were almost linear, and differences to the regression
lines were less than 5mm. Meanwhile, the gradient of the regression line, i.e.,
an average movement speed, varied from case to case, and were different from
the specified catalog value. These facts indicate that it is reasonable to adopt
assumption 2, and to use this assumption to calculate the movement of the
platform in each case of scanning.

5. Experiment and Modeling Results

The Climbing Sensor was put into practical use in modeling the Bayon Tem-
ple in Angkor Thom, Cambodia. The areas in which we used the Climbing
Sensor in the temple are as follows.
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Figure 3.9. An example of area scanned by the Climbing Sensor.

(a) Gap space be-
tween the terrace
and the inner galle-
ria.

(b) Northeast part of
the North Library.

(c) Especially nar-
row area.

(d) Nearly horizon-
tal setting condi-
tion.

Figure 3.10. Scanning situations in the Bayon Temple using the Climbing Sensor.

Gap spaces between the terrace and the inner galleria: 173 scans.

Northeast part of the North Library (a scripture house): 5 scans.

Fig. 3.9 shows the map of the scanned areas, and Fig. 3.10 shows our experi-
mental scanning situation.

5.1 Modeling Result

Fig. 3.11 is an example of modeling result of the gap space between the
terrace and inner galleria by the Climbing Sensor. Fig. 3.11(a) is a captured
scene of the target by a camera. It can capture only a limited area of the scene
because the space is so narrow that it is hard to keep enough distance to the tar-
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N

(a) Actual scene. (b) Modeling result. (c) Composite of all models in the gap areas.

Figure 3.11. Modeling result of the gap between the terrace and the inner galleria in the Bayon
Temple.

(a) Before scanning by the Climbing Sensor. (b) After scanning by the Climbing Sensor.

Figure 3.12. Modeling result of the northeast part of the North Library in the Bayon Temple.

get, and because the field angle of the camera is limited. Even in the case when
using sensors such as Cyrax 2500, the area it can cover by scanning once is ap-
proximately the same level. Meanwhile, Fig. 3.11(b) is a 3D model acquired
by scanning only once by using our system. Fig. 3.11(c) is the composite of
all models scanned by the system in the gap areas between the terrace and the
inner galleria. The reason why the northeast parts of the gap are lacking is
because they include areas with a width less than 30cm, which is hard to set,
even using our system.

Fig. 3.12 is an example of the modeling result of the northeast part of
the North Library. The 3D model shown in Fig. 3.12(a) consists of the data
scanned by Cyrax 2500. Though the circled part was hard to scan using Cyrax
because of the spatial constraint of the setting, it was successfully filled by our
system.

These results point out that the characteristics of the Climbing Sensor, its
thin dimension and wide field angle, are effective.
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Scan #2 (Cyrax 2500)

Scan #1 

(Our system) Distance to corresponding point < 1.5cm

Figure 3.13. Comparing 3D models obtained from the Climbing Sensor and Cyrax 2500.

5.2 Evaluation

In order to confirm the accuracy of the modeling result based on the esti-
mated speed, we performed comparisons under two conditions.

First, we compared our modeling result with the basic standard model, us-
ing the Cyrax 2500 for the basic standard model. This model can be regarded
as appropriate, since it is fixed on the ground and it assures the scanning er-
ror for the depth direction to be less than ± 6mm, which is accurate enough
compared with that of LMS200. As a result of applying Oishi’s fast alignment
algorithm[8, 9] to the two models, the iterative calculation stably converged
and they matched well. For most points in overlapping areas between the two
models, the distance to the corresponding point (the nearest neighbor point in
the counter model) became less than 1.5cm as shown in Fig. 3.13.

Second, we compared two modeling results both obtained by the Climb-
ing Sensor. The histogram in Fig. 3.14 shows that the estimated speed varies
from case to case. Comparing two models resulting from different values of
estimated speeds is effective in proving the accuracy of each model. Fig. 3.15
shows the result of alignment. These are cases when the moving platform is
assumed to move in (a) the specified speed, or (b) our estimated speed value.
In (b), for most points in overlapping areas, the distance to the corresponding
point became less than 2 cm. Although the speed differs considerably, two
models based on different values of estimated speed were aligned well.

6. Conclusion

In this chapter, we described the design of a new type of sensor named
Climbing Sensor to model areas too narrow for ordinary commercial sensors.
While the localization of the sensor in a specific time is one of the general
problems in remote sensing, by using a scan parallel to the movement, we
succeeded in obtaining accurate speeds of the moving sensors, avoiding error
accumulation and dispersing them throughout the whole scan.

The results show that the 3D model was accurate enough, since aligning
the model with a model acquired from a fixed sensor went well. Also, 3D
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Figure 3.14. The histogram of the estimated speed.

Distance to corresponding point < 2cm Distance to corresponding point < 2cm

Scan 1 0.417 m/s (Catalog spec.)
Scan 2 0.417 m/s (Catalog spec.)

Scan 1 0.391 m/s (Estimated val.)
Scan 2 0.363 m/s (Estimated val.)

(a) When using specified speed values. (b) When using estimated speed values.

Figure 3.15. Comparing 3D models both obtained from the Climbing Sensor, but with differ-
ent values of estimated speed.

models obtained by the Climbing Sensor and rectified with different values of
estimated speed matched well.

As a future project, we are planning to align the range images using de-
formable alignment[3]. By using this, the correct speed of the moving sensor
could be analytically obtained under the condition that the range image has
an overlap with another accurate range image. Also, it will be an interesting
challenge to equip the moving platform with a camera and a light source, and
create textured 3D models with true color.
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Chapter 4

INVERSE POLARIZATION RAYTRACING:
ESTIMATING SURFACE SHAPES OF
TRANSPARENT OBJECTS

Daisuke Miyazaki and Katsushi Ikeuchi

Abstract We propose a novel method for estimating the surface shapes of transparent ob-
jects by analyzing the polarization state of the light. Existing methods do not
fully consider the reflection, refraction, and transmission of the light occurring
inside a transparent object. We employ a polarization raytracing method to
compute both the path of the light and its polarization state. Our proposed itera-
tive computation method estimates the surface shape of the transparent object by
minimizing the difference between the polarization data rendered by the polar-
ization raytracing method and the polarization data obtained from a real object.

1. Introduction

There are many beautiful cultural assets made of glass, however, the risks
that they will be damaged or lost are unavoidable. Especially, for art works
made of glass, we cannot reconstruct its beauty if we once break it, because it
is impossible to conceal all the cracks of the broken glass even if we try hard
to attach its pieces together. Therefore, it is necessary to develop a technique
to digitally preserve the 3D information of art works made of glass. However,
in the field of computer vision, few methods have been proposed for estimat-
ing the shape of transparent objects, because of the difficulty of dealing with
mutual reflection, which is the phenomenon that the light not only reflects
at the surface of the transparent object but also transmits into the object and
causes multiple reflections and transmissions inside it. In this chapter, we use
the term “interreflection” for such internal reflection. Raytracer simulates the
interreflection, and renders the 2D image from 3D shape:

Image = Raytracer(Shape) . (4.1)



50 DIGITALLY ARCHIVING CULTURAL OBJECTS

Figure 4.1. Result for heart-shaped glass: (a) Target object, (b) result of proposed method, (c)
raytracing image.

If an inverse function of raytracing were to exist, the 3D shape could be ob-
tained straightforwardly from 2D data; however, there is no closed-form so-
lution for the inverse problem of raytracing. This chapter presents a novel
method for estimating the surface shape of transparent objects by numerically
solving the inverse problem of raytracing and, at the same time, by analyzing
the polarization of transparent objects.

An example for applying the proposed method is shown in Figure 4.1. Fig-
ure 4.1(a) is the target object, and Figure 4.1(b) is the result of proposed
method. Figure 4.1(c) is a rendered example of the raytracing method by
using the estimated shape.

Polarization is a phenomenon in which the light oscillates in one direction.
Recently, research to estimate the shape of the object by using polarization
has increased [1–5]. Saito et al. [6] and Miyazaki et al. [7, 8] estimated

the surface shape of transparent objects by means of polarization analysis.
Unfortunately, because these methods do not consider interreflection, they do
not provide sufficient accuracy for estimating the shape of transparent objects.
Other methods that estimate the 3D shape of transparent objects without using
polarization have been proposed. Murase [9] estimated the shape of a water
surface by analyzing the undulation of the water surface. Hata et al. [10]
estimated the surface shape of transparent objects by analyzing the deformation
of the light projected onto the transparent objects. Ohara et al. [11] estimated
the depth of the edge of a transparent object by using shape-from-focus. Ben-
Ezra and Nayar [12] estimated the parameterized surface shape of transparent
objects by using structure-from-motion. Kutulakos [13] estimated both the
depth and the surface normal of transparent objects by multiple viewpoints
and multiple light sources. These methods, however, do not estimate arbitrary
shapes of transparent objects.

There are other works that deal with transparent objects by using methods
such as environment matting [14–19] and reflection separation [20–23]; how-
ever, they do not provide enough information about the shapes of the transpar-
ent objects.



Inverse Polarization Raytracing 51

We simulate the interreflection of transparent objects by using a method
called polarization raytracing, and we use this method to estimate the surface
shapes of transparent objects with arbitrary shapes. In this chapter, a forward-
facing surface of the transparent object is called a front surface, and an object
surface facing away from the camera is called a back surface. Our proposed
method estimates the shape of the front surface by using polarization ray-
tracing when the refractive index, the shape of the back surface, and the
illumination distribution are given.

The rest of the chapter is organized as follows. In Section 2, we describe
the theoretical background of the polarization raytracing method. In Section
3, we explain our estimation method, which solves the inverse problem of po-
larization raytracing method. Our measurement results are shown in Section
4, and our conclusions are presented in Section 5.

2. Polarization Raytracing

The theoretical details of the principle of polarization, which appears in this
section, are presented in the literature [24, 25].

2.1 Conventional Raytracing

A conventional raytracing method renders a 2D image from 3D geometrical
shape data of transparent objects or other kind of objects. The algorithm of the
conventional raytracing method can be divided into two parts. The first part is
the calculation of the propagation of the ray. The second part is the calculation
of the intensity of the light.

Figure 4.2 describes the light reflected and transmitted between material 1
and material 2. Materials 1 and 2 may be, respectively, the air and the transpar-
ent object, and vice versa. Incidence angle, reflection angle, and transmission
angle are defined in Figure 4.2. We assume that the surface of transparent
objects is optically smooth; thus, the incidence angle is equal to the reflec-
tion angle. The transmission angle is related to the incidence angle as the
following Snell’s law:

sin θ = n sin θ′ , (4.2)

where θ is the incidence angle, θ′ is the transmission angle, and n is the ratio
of the refractive index of material 2 to that of material 1. In this study, we
assume that the refractive index of one object is a scalar value which is, at the
same time, constant throughout any part of the object. The plane of incidence
(POI) is a plane that includes the surface normal direction, the incident light
direction, the reflected light direction, and the transmitted light direction.

The intensity ratio of reflected light to incident light is called intensity reflec-
tivity R, and the intensity ratio of transmitted light to incident light is called
intensity transmissivity T . Subscripts ‖ and ⊥ represent the components par-
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Figure 4.2. Reflection, refraction, and transmission.

allel and perpendicular to POI, respectively. Thus, parallel and perpendicular
components of intensity reflectivity are represented as R ‖ and R⊥, respec-
tively, while those of intensity transmissivity are represented as T ‖ and T⊥,
respectively. These values are defined as follows:

R‖ =
tan2(θ − θ′)
tan2(θ + θ′)

(4.3)

R⊥ =
sin2(θ − θ′)
sin2(θ + θ′)

(4.4)

T‖ =
sin2θ sin 2θ′

sin2(θ + θ′) cos2(θ − θ′) (4.5)

T⊥ =
sin 2θ sin 2θ′

sin2(θ + θ′)
. (4.6)

If an incidence angle is larger than the critical angle, then the light does not
transmit and totally reflects. This phenomenon is called total reflection and
occurs when the incidence light is inside the object (namely, when material 1
is the object and material 2 is the air). Critical angle θC is defined as follows:

sin θc = n . (4.7)

For the total reflection, we must use R‖ = R⊥ = 1 and T‖ = T⊥ = 0.
The conventional raytracing method calculates the propagation of the ray by

using the Snell’s law (Equation (4.2)), and calculates the intensity of the light
by using the total intensity reflectivity R and the total intensity transmissivity
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T , which are defined as follows:

R =
R‖ + R⊥

2
, T =

T‖ + T⊥
2

. (4.8)

2.2 Mueller Calculus

In this chapter, we call the raytracing method that considers the polarization
effect the polarization raytracing method. The algorithm of the polarization

raytracing method can be divided into two parts. For the first part, the calcu-
lation of the propagation of the ray, we employ the same algorithm used in the
conventional raytracing method. For the second part, the calculation of the
polarization state of the light, there are three famous methods: Mueller calcu-
lus, Jones calculus, and the method that uses the coherence matrix. In this
study, we employ Mueller calculus because of its simplicity of description,
along with its ease of understanding and implementation. These three methods
have almost identical functions; thus, all discussions presented in this chapter
are also applicable to other calculi. Some researchers [26–28, 32, 31, 29, 30]
also implemented and improved the polarization raytracing or improved these
three methods, and also, there is some commercial software [33–35] that uses
polarization raytracing.

In Mueller calculus, the polarization state of the light is represented as
Stokes vector s = (s0, s1, s2, s3)T . The Stokes vector is a 4D vector. Its first
component s0 represents the intensity of the light; its second component s 1

represents the horizontal power of the linear polarization; its third component
s2 represents the +45◦-oblique power of the linear polarization; and its fourth
component s3 represents the power of the right circular polarization. The
Mueller matrix M, which is a 4×4 matrix, represents how the object changes
the polarization state of the light. The operation of Mueller calculus is a linear
operation.

2.3 Mueller Matrices

In this section, we present an example of calculation using Mueller calculus.

Suppose the geometrical setup when the reflected and transmitted light is
observed from the camera is as described in Figure 4.3. In this figure, there
are two kinds of coordinates systems: x ′y′z′ coordinates and xyz coordinates.
Here, the z′ axis and the z axis are the same. x′ is included in the POI and is
facing to the same side as the surface normal is facing. The angle between x ′
axis and x axis is called the POI angle φ in xyz coordinates.

In the case presented in Figure 4.3, observed light is a composition of re-
flected light and transmitted light. The Stokes vector s ′ of the observed light



54 DIGITALLY ARCHIVING CULTURAL OBJECTS

Figure 4.3. Reflected and transmitted light observed by the camera.

is calculated as follows:

s′ = C(φ)D(δ; n)R(θ; n)C(−φ)sr
+ C(φ)T(θ; n)C(−φ)st . (4.9)

Stokes vectors of the incident light are represented as s r and st,where sr and st
represent the lights that are set in the origin of the reflection and transmission,
respectively. C is the rotation Mueller matrix and is given by:

C(φ) =

⎛
⎜⎜⎝

1 0 0 0
0 cos 2φ − sin 2φ 0
0 sin 2φ cos 2φ 0
0 0 0 1

⎞
⎟⎟⎠ . (4.10)

R and T are the reflection Mueller matrix and the transmission Mueller ma-
trix, respectively, which are represented as follows:

R =

⎛
⎜⎜⎜⎜⎝
(R‖ + R⊥)/2 (R‖ −R⊥)/2 0 0
(R‖ − R⊥)/2 (R‖ +R⊥)/2 0 0

0 0
√
R‖R⊥ 0

0 0 0
√
R‖R⊥

⎞
⎟⎟⎟⎟⎠ (4.11)

T =

⎛
⎜⎜⎜⎜⎝
(T‖ + T⊥)/2 (T‖ − T⊥)/2 0 0
(T‖ − T⊥)/2 (T‖ + T⊥)/2 0 0

0 0
√
T‖T⊥ 0

0 0 0
√
T‖T⊥

⎞
⎟⎟⎟⎟⎠ . (4.12)

However, if the total reflection occurs, that is, if the incidence angle θ is
larger than critical angle θC , then R and T are set to be identity matrix and
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zero matrix, respectively. D is the retardation Mueller matrix and is given as:

D(δ) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cos δ sin δ
0 0 − sin δ cos δ

⎞
⎟⎟⎠ , (4.13)

where δ is the amount of the phase shift (or retardation). The phase of
the reflected light shifts when the total reflection occurs. Thus, for the total
reflection, δ in the following equation is used.

tan
δ

2
=

cos θ
√

sin2 θ − n2

sin2 θ
. (4.14)

The phase of the reflected light inverts when the incidence angle is smaller
than the Brewster angle θB , which is defined as follows:

tan θB = n . (4.15)

Thus, the value of δ is set as follows:

δ =

⎧⎨
⎩

Eq.(4.14) θ ≥ θC
180◦ θ ≤ θB
0◦ otherwise .

(4.16)

2.4 Degree of Polarization

The polarization state of the light is calculated by observing the object with
a monochrome camera, which has a linear polarizer in the front. For a certain
pixel, we denote the maximum intensity observed by rotating the polarizer as
Imax and the minimum as Imin. The angle of the polarizer when the minimum
intensity Imin is observed is called the phase angle ψ. This angle is defined as
the angle from +x axis to +y axis in xyz coordinates (Figure 4.3).

Because the linear polarizer is used in this research, the fourth parameter
s3 of the Stokes vector cannot be determined. The relationship between the
Stokes vector (s0, s1, s2)T and Imax, Imin, ψ is:⎛

⎝s0s1
s2

⎞
⎠=

⎛
⎝1 0 0

0 cos 2ψ − sin 2ψ
0 sin 2ψ cos 2ψ

⎞
⎠
⎛
⎝Imax + Imin

Imax − Imin

0

⎞
⎠. (4.17)

The degree of polarization (DOP) represents how much the light is polarized
and is defined as follows:

ρ̂ =

√
s21 + s22 + s23

s0
. (4.18)
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However, linear polarizer can only calculate the following degenerated DOP:

ρ =
Imax − Imin

Imax + Imin
=

√
s21 + s22

s0
. (4.19)

For the remainder of this chapter, we refer to the ratio calculated by Equation
(4.19) as DOP.

2.5 Illumination Distribution

In this study, we assume that all light sources are unpolarized. We also
assume that the front surface of the object is uniformly illuminated with the
same intensity in every direction, and that the back surface of the object is
also uniformly illuminated with the same intensity in every direction but with
a different intensity from the intensity that illuminates the front surface.

3. Inverse Polarization Raytracing

In this section, we introduce our method for estimating the front surface
shape of a transparent object using the DOP and the phase angle as inputs
under the assumption that the refractive index, the shape of the back surface,
and the illumination distribution are given. Details of numerical algorithms are
shown in the literature [36].

We denote the input polarization data as IE. Polarization data are rep-
resented as an image (2-dimensionally distributed data) where the DOP and
phase angle are set for each pixel. The polarization raytracing explained in
Section 2 can render the polarization data from the shape of the transparent ob-
ject by tracing the light ray and by Mueller calculus. We denote this rendered
polarization image as IR. The shape of transparent objects is represented as

the heightH , set for each pixel. Heights partially differentiated by x and y are
called gradients, and are represented as p and q, respectively:

p = Hx =
∂H

∂x
, q = Hy =

∂H

∂y
. (4.20)

Surface normal n = (−p,−q, 1)T is represented by these gradients.
The rendered polarization image IR depends upon height and surface nor-

mal, so it can be represented as IR(H, p, q). Our problem is finding the best
values to reconstruct a surface H that satisfies the following equation:

IE = IR(H, p, q) . (4.21)

We call this equation the “polarization raytracing equation” from the analogy
of “image irradiance equation” used in the shape-from-shading problem.
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A straightforward definition of the cost function, which we want to mini-
mize, can be as follows: ∫∫

E1(x, y)dxdy , (4.22)

where,
E1 = (IE − IR(H, p, q))2 . (4.23)

We will sometimes omit the variables (x, y) in the subsequent discussions for
the simplicity of descriptions. IR depends upon p, q, and H , while p, q, andH
depend upon each other with Equation (4.20). Thus, the cost function must be
modified as follows: ∫∫

(λE1 +E2) dxdy , (4.24)

where,
E2 = (Hx − p)2 + (Hy − q)2 . (4.25)

λ is a Lagrange undetermined multiplier.
Euler equations that minimize Equation (4.24) are derived as follows:

p = Hx − λ

2
∂E1

∂p
(4.26)

q = Hy − λ

2
∂E1

∂q
(4.27)

H = H̄ − 1
4

(px + qy)− λ

8
∂E1

∂H
, (4.28)

where H̄ is a 4-neighbor average of H .
Each of the above equations can be decomposed into two steps:

p(k) = H (k)
x (4.29)

p(k+1) = p(k) − λ(k+1)
1

∂E
(k)
1

∂p
(4.30)

q(k) = H (k)
y (4.31)

q(k+1) = q(k) − λ(k+1)
2

∂E
(k)
1

∂q
(4.32)

H (k+1) = H̄ (k) − 1
4

(
p(k+1)
x + q(k+1)

y

)
(4.33)

H () = H () − λ()
3

∂E
()
1

∂H
. (4.34)

Here, λ1, λ2, and λ3 are scalar values that are determined for each pixel and
for each iteration step. Superscript (k) represents the iteration number. We do
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not write down the iteration number for Equation (4.34) because we do not use
this equation due to the following reasons. One reason is that the cost function
E1 depends upon the change of surface normal rather than on the change of
height. Another reason is that the cost function E 1 smoothly changes when
the surface normal changes, but it does not smoothly change when the height
changes. This fact was empirically proved in the preliminary experiments.

The algorithm goes as follows. First, we set initial values of the shape H
for each point of the front surface. Next, p and q are calculated by Equations
(4.29)(4.31). Then, we solve Equations (4.30)(4.32). λ1 and λ2 should be
optimal values; thus, we use Brent’s method to determine λ 1 and λ2, which
minimizes the cost function E1. After computing p and q at every pixel, we
solve Equation (4.33) by the relaxation method [37, 38] to determine the height
H . We use the alternating-direction implicit method to solve the relaxation
problem.

To conclude, the front surface shape of the transparent object is estimated by
an iterative computation, where each step of iteration solves Equations (4.29)–
(4.33), and the iteration stops when Equation (4.22) is minimized. There are
two reasons why we use Equations (4.29)–(4.33) instead of Equations (4.26)–
(4.28): (1) If we solve Equations (4.26)–(4.28) simultaneously by setting an
arbitrary value λ, a parameter tuning problem will occur where λ must be set
to an optimal value in order to stably solve these equations; (2) We can apply
adequate numerical algorithms for each of Equations (4.29)–(4.33).

4. Measurement Result

4.1 Acquisition System

For obtaining polarization data, we developed an acquisition system, which
we named “Cocoon” (Figure 4.4). The target object is set inside the center
of the plastic sphere whose diameter is 35cm. This plastic sphere is illumi-
nated by 36 incandescent lamps. These 36 light sources are almost uniformly
distributed spatially around the plastic sphere. The plastic sphere diffuses the
light that comes from the light sources, and it behaves as a spherical light
source, which illuminates the target object from every direction. Note that the
measurement is possible for arbitrary illumination conditions though the inten-
sity and the polarization state of the illumination distribution must be known.
The target object is observed by monochrome camera from the top of the plas-
tic sphere, which has a hole on the top. Linear polarizer is set in front of the
camera. We put the target object on the black pipe to make the incoming light
from the back surface uniform and unpolarized. The camera, object, and light
sources are fixed. From four images taken by rotating the polarizer at 0◦, 45◦,
90◦, and 135◦, we calculate Imax, Imin, and ψ (Section 2.4).



Inverse Polarization Raytracing 59

Figure 4.4. Acquisition System “Cocoon”.

Figure 4.5. DOP image; (a) obtained from real object, (b) rendered by polarization raytracing,
and (c) rendered by assuming that the internal interreflection does not occur.

4.2 Rendering Result

Before estimating the shape of the transparent object, we analyze the ren-
dered image of forward polarization raytracing (Section 2). From the spher-
ical part, we observe a transparent acrylic hemisphere, whose refractive index
is 1.5 and diameter is 3cm. Obtained polarization image of the real object

is shown in Figure 4.5(a). The figure represents the DOP, where DOP 0 and
DOP 1 are represented as black and white, respectively.

The rendered polarization image of polarization raytracing is shown in
Figure 4.5(b). The refractive index and the shape of the object are known. As
for the illumination distribution, we have to obtain the ratio of the intensity of
the light illuminating the front surface to that illuminating the back surface.
Unfortunately, it is impossible to observe the light illuminating the back sur-
face without moving the object out of the way. Therefore, we find the most
appropriate value of the intensity of the back surface where the difference of
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Figure 4.6. Simulation result of concave shape: (a) Initial state, (b)(c) result after 5, 20 loops,
respectively.

the obtained DOP (Figure 4.5(a)) and the rendered DOP (Figure 4.5(b)) min-
imizes, by solving such minimization problem. Figure 4.5(b) is calculated by
using the intensity obtained from such minimization.

For comparison, a rendered image with no interreflection is shown in Figure
4.5(c). This DOP image is rendered by assuming that the light reflected at
the object’s surface once is just observed and that the transmission does not
occur. The root mean square (RMS) error between real data (Figure 4.5(a))
and DOP data of no interreflection (Figure 4.5(c)) was 0.48, while the RMS
error between real data and polarization raytracing data (Figure 4.5(b)) was
0.055.

4.3 Simulation Result

Here, we will show the result of estimating the 2D shape of a simulated
object for evaluating the robustness of our algorithm. This virtual transparent
object is a concave shape whose refractive index is 1.5. The object is rep-
resented as a dotted line in Figure 4.6. We render the polarization data of
the object observed from the upper position to the lower direction, and after
that, we estimate the front surface shape of the concave object by using the
rendered polarization data as input data. Illumination is distributed uniformly
from every direction with the same intensity. The light is not illuminated at
the bottom of the shape but is illuminated on the front surface. Illumination
distribution, the back surface shape, and the refractive index are given.

The estimation result is illustrated in Figure 4.6. The dotted line is the true
shape, and the solid line is the estimated shape. Figure 4.6(a) indicates the
initial value, and Figure 4.6(b) and Figure 4.6(c) indicate the results after 5 and
20 loops of the proposed method. The shape, which is generated by scaling the
true height by 1.2, is used as the initial state of the shape. The shape converged
to the true shape at 20 loops. The average computation time was 14.8[sec]
for 1 loop with 320 pixels by using Pentium4 3.4GHz. Here, the maximum
number of tracings is 100 reflections or transmissions; however, if the energy
of the light ray becomes less than a certain threshold, the tracing of the light
ray is stopped.
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Figure 4.7. Estimation result of hemisphere: (a) Initial state (result of previous method), (b)
result after 10 loops.

4.4 Measurement Results of Real Object

4.4.1 Hemisphere

For the first measurement result, we observe an acrylic transparent hemi-
sphere from the spherical part, which is also used in the rendering experiment
(Section 4.2). We assume that the refractive index and the back surface shape
are known. We use the same value for the intensity of the light source, which
is obtained in Section 4.2. The value is obtained by observing the same object
as Section 4.2, and we will provide a more objective result in the next section.

The estimation result is shown in Figure 4.7. Figure 4.7(a) represents the
result of the previous method [6–8] and, at the same time, it represents the
initial value. Figure 4.7(b) is the result after 10 loops of our method. The
average computation time was 36[sec] for 1 loop with 7,854 pixels. Here, the
maximum number of tracings is 10 reflections or transmissions.

More detailed evaluation is done in the 2D plane that is a cross section of
the 3D object, which includes the center of the base circle and the line perpen-
dicular to that circle. A light ray that is inside this plane does not go out, and
a light ray that is outside this plane does not come in. The proposed algorithm
estimates the front surface shape, a semicircle, by using the polarization data
of the 2D plane as input data.

The result of applying the proposed method is given in Figure 4.8(1c) and
Figure 4.8(2c). In Figure 4.8, the solid line represents the estimated shape,
and the dotted line represents the true shape. For the estimated result shown in
Figure 4.8(1c), the result of the previous method (Figure 4.8(1a)) is used for
the initial state of the shape. For the estimated result shown in Figure 4.8(2c),
the true shape, hemisphere (Figure 4.8(2a)), is used for the initial state of the
shape. Figures 4.8(1b)(2b) and Figures 4.8(1c)(2c) are the result after 5 and 50
loops, respectively. The shapes converge to the same shape even if the initial
shapes are different. The reason why there is a protruding noise at the top
of the estimated shape might be the failure of considering the hole on top of
the plastic sphere. Although we have assumed that the object is illuminated
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Figure 4.8. Estimation result: (1a) Initial state (result of previous method), (1b)(1c) results
after 5 and 50 loops, (2a) initial state (true shape), (2b)(2c) results after 5 and 50 loops.

Figure 4.9. Error for each loop: (square) Result when true shape is initial value, (diamond)
result when result of previous method is initial value.

uniformly with the same intensity from all directions, we now believe that this
assumption might not strictly hold for this hole. Therefore, considering such
illumination distribution will be our future work.

The value of the cost function (Equation (4.22)) per each iteration is plotted
in Figure 4.9. The vertical axis in Figure 4.9 represents the value of Equation
(4.22), while the horizontal axis represents the iteration number. A diamond
mark is the value of the result whose initial state is the result of the previous
method (Figures 4.8(1a)(1b)(1c)). A square mark is the value of the result
whose initial state is the true shape (Figures 4.8(2a)(2b)(2c)). The leftmost
value is the value of the cost function of the initial state. Both the value and
the shape did not change after around 8 loops. The average computation time
was 5.9[sec] for 1 loop with 320 pixels.

The RMS error between the estimated value and the true value is used to
compare the accuracy between the proposed method and the previous method.
The RMS error of the surface normal was 23.3◦ for previous method, 9.09◦ for
our method when the initial state was the result of the previous method, and
8.86◦ for our method when the initial state was the true shape. The RMS error
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Figure 4.10. Bell-shaped transparent acrylic real object.

of the height was 2.70mm for the previous method, 0.672mm for our method
when the initial state was the result of previous method, and 0.548mm for our
method when the initial state was the true shape.

4.4.2 Bell-shaped Object

Finally, we observe the transparent object shown in Figure 4.10. This object
is made of acrylic and is a body-of-revolution. Its refractive index is 1.5 and
its diameter of the base is 24mm. The object is observed from the projected
area of the object. The front surface is a curved surface and the back surface
is a disk. The camera is set orthogonally to the disk. We assume that the

refractive index and the back surface shape are known. We use the same
value for the intensity of the light source that is obtained in Section 4.2. This
chapter only concentrates on proposing a method to estimate the shapes of
transparent objects, and obtaining the correct illumination distribution will be
a future work.

We estimate the shape of a cross-section of the object to analyze the preci-
sion of the proposed method. The cross-section includes the center of the base
circle and the line perpendicular to that circle. Figure 4.11(c) illustrates the
estimated shape of the object. The solid curve represents the obtained front
height, and the dotted line represents the given back height. The initial value
is set to be a semicircle shown in Figure 4.11(a). The estimated shape after 5
and 20 loops is illustrated in Figure 4.11(b) and Figure 4.11(c), respectively.
RMS of the height was 0.24mm, where the true shape was obtained from the
silhouette extracted manually by a human operator from the photograph of the
object taken from the side. The average computation time was 7.0[sec] for 1
loop with 320 pixels.

5. Conclusion

In this chapter, we have proposed a novel method for estimating the surface
shape of transparent objects by minimizing the difference between the input
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(a) (b) (c)

Figure 4.11. Estimation result: (a) Initial value, (b)(c) result after 5, 20 loops.

polarization data taken by observing the transparent object and the computed
polarization data rendered by the polarization raytracing method.

We estimated the shape of transparent objects by an iterative computation.
We used a uniform illumination in this study; however, Hata et al. [10] esti-
mated the shape of transparent objects by an iterative computation where the
object was illuminated by structured light. Ben-Ezra and Nayar [12] estimated
the shape of a transparent object observed from many viewpoints by an itera-
tive computation. To improve the precision of measuring the surface shape of
transparent objects, we should probably observe the target object from multi-
ple viewpoints or under various types of illumination. In any case, the iterative
computation is considered to be necessary. Our chapter provides the technique
for measuring the surface shape of transparent objects using iterative compu-
tation, and this technique might be used as the basis for further developments.

Most of the artificial transparent objects have a planar base that enables them
to stand by themselves. Also, the material (refractive index) of the artificial
transparent objects is known in many cases. Thus, the assumption we adopted
in this chapter, “back surface shape and refractive index are known,” is ef-
fective in many cases. However, not all objects meet these conditions; thus,
we intend to develop a method that can measure the back surface shape and
refractive index at the same time as well as the front surface shape.
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Chapter 5

ROBUST SIMULTANEOUS REGISTRATION OF
MULTIPLE RANGE IMAGES

Ko Nishino and Katsushi Ikeuchi

Abstract The registration problem of multiple range images is fundamental for many ap-
plications that rely on precise geometric models. We propose a robust registra-
tion method that can align multiple range images comprised of a large number
of data points. The proposed method minimizes an error function that is con-
structed to be global against all range images, providing the ability to diffusively
distribute errors instead of accumulating them. The minimization strategy is de-
signed to be efficient and robust against outliers by using conjugate gradient
search utilizing M-estimator. Also, for “better” point correspondence search,
the laser reflectance strength is used as an additional attribute of each 3D data
point. For robustness against data noise, the framework is designed not to use
secondary information, i.e. surface normals, in its error metric. We describe the
details of the proposed method, and present experimental results applying the
proposed method to real data.

1. Introduction

Registration of multiple point cloud range images is an important and fun-
damental research topic in both computer vision and computer graphics. Many
applications and algorithms can be (are) developed on the assumption that
accurate geometric models are obtained a priori, e.g., recognition, localiza-
tion, tracking, appearance analysis, texture-mapping, metamorphism, and vir-
tual/mixed reality systems in general, among others. Additionally, projects to
construct precise geometric models based on observation of real world objects
for the purpose of digital preservation of cultural heritage objects have drawn
attention recently [3, 18, 21]. Because of their objective, these projects require
very precise registration of multiple range images.

In this chapter, we propose a framework to register multiple range images
robustly. Taking the point cloud images obtained through use of a range sen-
sor, e.g., laser range scanner [8, 7, 20], light-stripe range finder [24], etc., as
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the input, we simultaneously register all range images to sit in one common
coordinate system. We highly prioritize our efforts to make the resulting reg-
istered geometric model accurate compared with making the whole procedure
computationally fast. For this reason, we design our registration procedure to
be a simultaneous registration method based on an error metric computed from
point-point distance, including additional attributes in its metric. Also, for ro-
bustness and efficiency, we adopt a conjugate gradient framework utilizing
M-estimator to solve the least-square problem of minimizing the total errors
through registration. Since we target large objects like the Great Buddha in
Kamakura, the data size of each range image becomes huge. Thus, we employ
k-d tree data structures for efficient point- point correspondence searches.

The remainder of this chapter is organized as follows. In section 2, we over-
view related work and present our framework. Section 3 describes how a point
correspondence search will be accomplished efficiently; and we describe the
details of how least- square minimization of the objective function, the core
of our simultaneous registration framework, in section 4. We show results of
applying our approach to real data in section 5, and section 6 concludes the
chapter.

2. Overview

2.1 Related Work

Past work on range image registration can be roughly classified with respect
to the following three aspects.

Strategy: simultaneous1 or sequential The basic strategy of registering
multiple range images can be represented by two different approaches. The
straightforward strategy is to focus on only two range images at a time, and
register each range image to another [25]. After one range image pair is regis-
tered, a new pair including either range image in the former pair, positioned in
the resulting coordinate, is registered. This is repeated till all range images are
used. Since this sequential strategy requires only two range images for each
registration stage, it can be implemented with less memory and the overall

computational cost tends to be cheap. Also, the computational cost for each
registration stage is not affected by the number of range images to be registered
consequently.

However, this straightforward strategy is well known to be less accurate. In
each range image pair registration stage, some error will be introduced due to
data noise, etc. Since each range image will be fixed in the resulting position
for each registration stage, this unavoidable error will be propagated to the lat-
ter registration stage and it will result in unaffordable error accumulated in the
last range image position. Although the “gap" developed by this error accu-
mulation can be small enough depending on the use of the resulting geometric
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model, it is much more preferable to avoid this theoretically, especially when
the geometric model will be used as a basis of texture-mapping or appearance
analysis, and so on.

Simultaneous registration solves this error accumulation problem by align-
ing all range images at once [1, 2, 5, 6, 10, 14, 19, 22, 23]. This can be accom-
plished by defining an error minimization problem by using an error metric
common among all range images. This approach can diffusively distribute the
registration error over all overlaps of each range image. The drawback is its

large computational cost as opposed to that of sequential approaches.
Matching unit: features or points When registering range images, the

problem is usually redesigned as an error (distance) minimization problem.
The basis of the error to be measured can be features derived from the range
images or points consisting of the range data. Feature-based methods extract
some signatures around 3D points, invariant to Euclidean transformation, in
each target range image and make correspondences among those features [6,
15, 16]. Based on the assumption that all correspondences are matched cor-
rectly, the transformation for registration can be computed in a closed form
manner. On the other hand, if the signatures computed from the range im-
ages do not provide enough information and the matching of them cannot be
done correctly, the registration stage can fail miserably. Point-based meth-
ods directly use the 3D points in an iterative manner. The point mates, the
point correspondences to compute the error metric, are dynamically updated
and several iterative steps are used to minimize the total error. One drawback
of this point-based approach is that it requires an initial estimation of the rough
transformation between the target range images, which is normally provided by
human hand or interaction, while most feature-based approaches do not have
this requirement.

Error metric: point-point distance or point-plane distance Originally,
point-based approaches, such as the ICP algorithm [4, 28], set the error met-
ric basis on the Euclidean distance between two points corresponding each
other [11, 19]. However, since this error metric does not take the surface infor-
mation into account, the point-based approaches based on point-point distance
suffer from the inability to “slide" overlapping range images. An alternative
to this distance metric is to use point-plane Euclidean distance, which can be
computed by evaluating the distance between the point and its mate’s tangent
plane [6, 22]. By embedding the surface information into the error metric in
this way, point-based approaches utilizing point-plane distance metric tend to
be robust against local minima and converge quickly. However, computing the
point-plane distance is computationally expensive compared with point-point
distance computation; thus, methods using viewing direction to find the corre-
spondence are also proposed for efficiency [1, 5, 22].
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2.2 Our Approach

Taking into account the consideration described above, we have designed
a registration algorithm which is i) based on the simultaneous strategy, ii)
using points as matching units, iii) with the point-point distance metric. The
framework is inspired by the work of Wheeler et al [26, 27], that applied similar
techniques for object recognition and localization.

We want to construct the geometric model to be as accurate as possible.
Also as future work, we would like to accomplish appearance analysis mak-
ing considerable use of the geometry. For this reason, as a preliminary step,
we attach more importance to robustness and accuracy than to computational
expense in the registration method. This causes us to choose a simultaneous
strategy, which is accurate in principle.

We employ points as matching units. Although the laser range scanner we
use is quite accurate, the distance to the object is large and the measurement
condition is poor in many cases. Because the scanned range images include
noise, the information computed from them will be even more corrupted by
the noise. Thus, we avoid using any secondary features derived from raw range
data; instead, we directly use data points as matching units.

We use the point-point distance metric. Due to the noise problem, as men-
tioned above, we have to avoid obtaining secondary features, surface normals
in this case, and thus, cannot use the point-plane metric that requires us to cal-
culate surface normals. It is also true that point- point metric is less expensive
in computational cost than the point- plane metric, and is preferable when the
data set is very large.

The overall simultaneous registration framework can be described as an
iteration of the following procedure until it converges.

Procedure OneStepOfSimultaneousRegistration

Array KDTrees, Scenes, PointMates, Transforms

foreach r in AllRangeImages
KDTrees[r] = BuildKDTree(r)

foreach r in AllRangeImages

foreach s in AllRangeImage-r
Scenes[s] = s

foreach i in Pointsof(r)
foreach s in Scenes

PointMates[i] += CorrespondenceSearch(i, KDTree[s])
Transforms[r] = TransformationStep(PointMates)

TransformAll(AllRangeImages, Transforms)
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We basically extend the framework of the pairwise ICP algorithm to han-
dle multiple range images simultaneously. This is achieved by setting up an
objective function to minimize globally, with respect to each of the range im-
ages. Defining model as the particular range image in interest and scene as
one of the range images in the rest of range image set, in one simultaneous
registration loop, each range image becomes a model once. Point mate search
(search for nearest neighbor point) for each point in the model is done against
all scene range images (M−1 if we haveM range images), and they are stored
in a global array. Rigid transformation for the current model is computed in a
conjugate gradient search framework utilizing M-estimator, and is stored in a
global array. After each range image has become a model once, all range im-
ages are transformed using the transformation stored in the global array. Note
that each range image is not transformed immediately. Considering that each
step transformation evaluated inside one simultaneous registration procedure
will not be so large, this latency of transformation will not cause a problem.
Furthermore, this timing of transformation saves us a large amount of compu-
tational time, since construction of k-d trees is required only once per range
image in one simultaneous registration procedure. Details will be discussed in
the following sections.

3. Point Mate Search

3.1 K-D Tree

As we try to register range images that consist of a large amount of 3D
points, finding correspondences for each point in each range image can easily
dominate a critical portion of the overall computational time. To obtain point
correspondences efficiently, we employ k-d tree structure to store the range
images [12]. K-d tree’s k-d abbreviates k-dimensional and it is a generalization
of a binary-search tree for efficient search in high dimension space. The k-
d tree is created by recursively splitting a data set down the middle of its
dimension of greatest variance. The splitting continues until the leaf nodes
contain a small enough number of data points.

The constructed k-d tree becomes a tree of depth O(logN ) where N is
the number of points stored. A nearest-neighbor search can be accomplished
by following the appropriate branches of the tree until a leaf node is reached.
A hyper-sphere centered at the key point with a radius of the distance to the
current closest point can be used to determine which, if any, neighboring leaf
nodes in the k-d tree must be checked for closer points. Once have we tested
all the data in leaf nodes which could possibly be closer, we are guaranteed
to have found the closest point in the tree. Though its worst case complexity
is O(N ), the expected number of operations for the nearest-neighbor search
is O(logN ), which will be the case if the data is evenly distributed. For the
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cases of storing surfaces in 3D space in k-d trees, usually this even distribution
assumption holds. The largest overhead involved in using k-d trees is that the
k-d tree of range-image points must be built prior to the search. This operation
costs O(N logN ). To avoid making this computational expense critical, we
update each range image position only once in one simultaneous registration
procedure as listed in the pseudo code in section 2.2, requiring only M times
of k-d tree rebuilds in one global iteration, where M is the number of range
images.

3.2 Distance Metric

To utilize a nearest-neighbor search based on k-d tree structure, we need
a measure of dissimilarity between a pair of points. The dissimilarity, Δ, be-
tween k-d points x and y must have the form

Δ(x, y) = F (
k∑
i=1

fi(xi, yi)) (5.1)

where the functions fi are symmetric functions over a single dimension and
functions fi and F are monotonic. All distances satisfy these conditions, in-
cluding the Euclidean distance ‖x − y‖. As mentioned in section 2.1, using
point-plane distance as the error metric provides faster convergence . However,
the point-plane distance, which can be computed by

Δ(x, y) = (x− y) ·Ny (5.2)

does not satisfy the monotonic condition. To take advantage of the efficiency of
the k-d tree structure, we use the point-point Euclidean distance as the dissimi-
larity measure. Also, we prefer point-point distance for the sake of robustness;
avoiding the usage of secondary information derived from raw data, such as
surface normals in point-plane, which can be sensitive to noise in the raw data
points.

Figure 5.1 depicts an example of point correspondences in the case of us-
ing point-point distance metric and point-plane distance metric. While the
point-point distance metric searches for the nearest neighboring point, mean-
ing establishing a discrete mapping of one surface to another, the point-plane
distance metric can be considered as a way to find the continuous mapping of
one surface to another. In cases like Figure 5.1, where the model surface has to
be “slid” to fit the scene surface, the point-plane approach succeeds in finding
the correspondences that enable us to compute the rigid transformation close
to the sliding direction, while the point-point approach tends to get stuck in a
local minima because of the inability to find point mates in the sliding direc-
tion. This sliding ability of point-plane approaches provides faster convergence
compared with using point-point distance metric.
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point-pointpoint-point point-planepoint-plane

model

scene

Figure 5.1. Point correspondences using point-point and point-plane distance metric.

Figure 5.2. Images using laser reflectance strength as pixel values.

To compensate for the inability of sliding in point-point based distance mea-
surement, we need to attach, to the 3D points, some information that suggests
better matches. For this purpose, we use the laser reflectance strength value
(referred to as RSV for the rest of this chapter) as an attribute of each 3D
point. Most laser range finders return the strength of the laser reflected at each
surface point that it measured as an additional output value. Figure 5.2 shows
two images with RSVs used as the pixel values. For better visualization, the
images are histogram-equalized. As can be seen, the RSVs are mostly invari-
ant against Euclidean transformation, since the dominant factor of the power of
laser reflected at an object surface is its surface material. One common method
to utilize two different sources of information in distance measurement, in this
case the position distance and RSV distance, is to set up a combined metric,
such as

Δ(x, y) = [(xx − xy)2 + (yx − yy)2 + (zx − zy)2 + λ(rx− ry)2]
1
2 (5.3)

where r is RSV and λ is a constant scalar. However, this scalar introduces
a tedious and ad hoc effort to determining the “best” λ. Instead, we use
the reflectance to determine the best pair among candidates of closest points.
Namely, we first search for multiple (m) closest points in the k-d tree, and
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model

scene

Figure 5.3. Point mates using point-point distance metric with reflectance strength values.
Different shape marks indicate different reflectance strength values.

then evaluate the RSV distance for each of them to get the closest point with
respect to laser reflectance strength value. We gradually reduce the number of
the candidates m along the iteration so as to make it inversely proportional to
the number of iterations. This utilization of the laser reflectance is similar to
[17], which uses color attributes to narrow down the closest point candidates.
Figure 5.3 depicts how the point-point distance metric utilizing RSV as addi-
tional attribute works in the example case depicted in Figure 5.1 (m = 4 in
this example).

3.3 Speeding Up

Even though we employ k-d tree structure for efficient point correspon-
dence search, when the number of points in the target range images is large,
the computational cost becomes massive. In early stages of the simultaneous
registration, when the range images are widely distributed, it is more important
to get them close to each other than to accurately compute the rigid transforma-
tion for each registration step. To provide a way to speed up the registration,
we subsample each range image to reduce the number of points used in the
registration process. The points in each range image are given a sequential

identification number m = 0, ..,M − 1 and a uniformly distributed random
number within the interval [0,M − 1] is generated to pick up the points to
be used. The seed number to generate the random numbers is common for all
range images in one simultaneous registration procedure and updated once per
one global registration step. In the current implementation, we allow the user
to determine the percentile of points to be used in each range image interac-
tively. In future implementation, this could be done automatically by first using
small percentage and gradually increasing it to reach one hundred percent.

As the range images are set to be still in one iteration of simultaneous
registration, it is very easy to make the whole framework run in a parallel
manner. In our current implementation, constructing k-d trees and search
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point mates and computing transformation steps are done in threads, providing
high scalability.

4. Least-square Minimization Strategy

4.1 Representing Transformation

Given a set of corresponding points (x i, yi) where i = 0, ..., N − 1, the
registration problem is to compute the rigid transformation which registers the
model points xi with their corresponding scene points y i. The rigid transfor-
mation can be specified by a pair of a 3× 3 rotation matrix R and a 3D trans-
lation vector t. When the corresponding points are aligned with each other, y i

can be written as
yi = Rxi + t (5.4)

Since range data points will be contaminated by noise, the range image reg-
istration problem can be described as an error minimization problem with the
error function as follows:

f(R, t) =
∑
i

‖Rxi + t − yi‖2 (5.5)

to minimize with regard to (R t). As mentioned in section 2.2, i will stand for
all point mates established from all pairs of range images (if there areM range
images, i will include all point mates from M × (M − 1) range image pairs).
Although it is convenient for vector computation to represent the rotation as a
3×3 matrix R, R will be constrained in a non-linear way as follows (T stands
for transpose):

RRT = I
|R| = 1

It is difficult to take advantage of the linear matrix representation of rotation
while satisfying these constraints. For this reason, we will use the quaternion
representation for rotation, which is a well known solution to this rotation

problem. (The benefits of using quaternion will be described later.) Thus,
the position parameters of each range image and the rigid transformation to
register all of them will be represented with seven element vectors as follows:

p = [tT qT ]T (5.6)

where q = [u v w s]T

4.2 M-Estimator

As seen in section 4.1, the registration problem can be described as a least-
square minimization problem with the objective function equation (5.5). Point
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correspondences are acquired using the techniques described in section 3. On
solving this error minimization problem, we will have to deal with two prob-
lems,

Poor initial correspondences We must assume that the point correspondences
established in the beginning will include a large number of mismatches.

Outliers Even when most of the point correspondences are correct, we still
have to deal with outliers resulting from mismatches and noise-corrupted
data points.

The underlying problem here is how to robustly reject outliers. The following
three representative classes of solutions can be found in the field of robust
statistics. The first class of solutions, outlier thresholding, is the simplest and
most computationally cheap technique; thus it is the most common technique
used in vision applications. The basic idea is to estimate the standard deviation
σ of the errors in the data and to then eliminate data points which have errors
larger than |kσ| where k is typically greater than or equal to 3. The problem
of outlier thresholding is that a hard threshold is determined to eliminate the
outliers. This means that, regardless of where the threshold is chosen, some
number of valid data points will be classified as outliers and some number of
true outliers will be classified as valid. In this sense, it is unlikely that a perfect
method for selecting the threshold exists unless the outliers are all known a
priori.

The second class of robust estimators is the median/rank estimation method.
The basic idea is to select the median or kth value (for some percentile k) with
respect to the errors for each observation and to then use that value as our error
estimate. The logic behind this is that the median is almost guaranteed not to
be an outlier as long as half of the data is valid. An example of median esti-
mators is the least-median-of-squares method (LMedS). LMedS computes the
parameters of interest which minimize the median of the squared error com-
puted from all data pairs using that parameter. Essentially, this requires an
exhaustive search of possible values of the parameters by testing least-squares
estimates using that parameter for all possible combinations of point corre-
spondences. While these median-based techniques can be very robust, this
exhaustive search remains a large drawback.

The third class of robust techniques is M-estimation; the technique we use.
The general form of M-estimators allows us to define a probability distribution
which can be maximized by minimizing a function of the form

E(z) =
∑
i

ρ(zi) (5.7)

where ρ(z) is an arbitrary function of the errors zi in the data set. The M-
estimate is the maximum-likelihood estimate of the probability distribution
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P equivalent to E(z). Least-squares estimation, such as minimizing (5.5),
corresponds to M-estimation with ρ(z) = z 2.

P (z) = e−E(z) = e−
∑

i
z2i (5.8)

We can find the parameters p that minimize E by taking the derivative of E
with respect to p and setting it to 0.

∂E

∂p
=

∑
i

∂ρ

∂zi
· ∂zi
∂p

=
∑
i

w(zi)zi
∂zi
∂p

= 0 (5.9)

where w(z) = 1
z
∂ρ
∂z

As can be seen in (5.9), M-estimation can be interpreted as weighted-least
square minimization, with the weight functionw being a function of data points
zi. In our current implementation, we use the Lorentz function as the M-
estimator because we found it to work best with our range image data.

4.3 Putting It Together

Now, we can redefine our registration problem as follows: Given a set of
corresponding points (x i, yi) (i=0,...,N-1), we will minimize

E(p) =
1
N

N∑
i

ρ(zi(p)) (5.10)

where zi(p) = ‖R(q)xi + t− yi‖ (5.11)

and ρ(zi) = log(1 +
1
2
z2
i ) (5.12)

The minimization of functionE can be accomplished in a conjugate gradient
search framework. Conjugate gradient search is a variation of gradient descent
search; it constrains each gradient step to be conjugated to the former gradient
step. This constraint avoids much of the zig-zagging that pure gradient descent
will often suffer from, and consequently provides faster convergence.

In applying conjugate gradient search to our minimization problem, we
need to compute the gradient of function E with respect to pose parameter p
which can be described as equation (5.9). For the following derivations, we
redefine zi to be

zi(p) = ‖R(qxi) + t− yi‖2 (5.13)

Prior to the computation of the gradient, we pre-rotate the model points, so
that the current quaternion is qI = [0 0 0 1]T which has the property of
R(qI) = I. This allows us to take advantage of the fact that the gradient of
R(q)x can easily be evaluated at q = qI:

∂(Rx)
∂q

x = 2C(x)Tb (5.14)
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where C(x) is the 3× 3 skew-symmetric matrix of the vector x which has the
useful characteristic as follows.

C(x)y = x× y (5.15)

where × is the cross product. With these facts, ∂zi
∂p in equation (5.9) can be

derived as

∂zi
∂p

= 2(R(q)xi + t− yi)
∂(R(q)xi + t− yi)

∂p

=
[

2(xi + t − yi)
4C(x)T (xi + t − yi)

]

=
[

2(xi + t − yi)
4xi × (t− yi)

]
(5.16)

With the gradient computed in the above manner, line minimization is ac-
complished with a golden section search. Line minimization methods using
interpolation are not adopted, since it is easy to imagine the base function to
be highly non-linear.

5. Results

5.1 Noisy Range Images

To examine its robustness against noise, we applied the proposed method
to a noisy range image sequence. We built a light stripe range finder [24],
and scanned a ceramic cat. By setting the threshold of the light stripe range
finder to include quite an amount of background and not to eliminate ill triangle
patches (triangle patches that have large aspect ratios), we obtained three range
images including a lot of noise. To compare the proposed method with the
registration method proposed in [22] 2, the range images were initially aligned
with each other manually as depicted in Figure 5.4. 3 After iterating both
methods until convergence, we eliminated all 3D points and triangle patches
that did not belong to the ceramic cat and measured the errors by using a point-
plane distance metric. Table 5.1 shows the results and Figure 5.5 depicts the
histograms of errors for both methods. Our method converged robustly, while
the method of [22] converged into a local minima, leaving a gap as can be seen
in Figure 5.6.

5.2 Preserving Cultural Heritage Objects

We have applied the proposed method to register real data, the Great Buddha
in Kamakura (Figure 5.7): a 13m tall statue sitting in open air. The Great

Buddha was scanned from fourteen different directions using Cyrax 2400 [8],
a time-of-flight laser range scanner that can scan up to 100m with±6mm error
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Figure 5.4. Initial positions of the Noisy Cat sequence.

Average Error Max. Error Min. Error
Our method 0.84 2.55 5.35× 10−7

[22] 1.29 2.57 3.21× 10−5

Table 5.1. Comparison of errors in mm.

Figure 5.5. Histogram of errors.

at 50m distance. Each point cloud image consists of approximately three to
four million vertices. Since registering all range images with full resolution
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Figure 5.6. Left: Registered with [22] Right: Registered with our method.(Viewing from the
top left of the cat.)

requires massive computational resource and time, we registered those range
images in 1/25 resolution as a preliminary experiment.

First the input range images were registered in a pairwise manner with occa-
sional manual operation for initial alignment; they were then registered simul-
taneously. The variance of Lorentz’s function was set at a large value in the
beginning and then gradually decreased each time the registration procedure
converged with a particular variance value. Rough initial pairwise alignment
was accomplished with around five to ten iterations, and the final simultaneous
registration was done with 25 iterations. Figure 5.8 depicts the M-estimator
error for each iteration for the last 25 iteration. Since all range images are

treated to be static inside each iteration, the M-estimator error does not always
get smaller after each iteration compared with the former iteration. However,
because the error is guaranteed to decrease inside each iteration, it is clear that
the algorithm converges to a certain minimum which is shown in the graph.

Figure 5.9 shows the resulting Great Buddha rendered as a point cloud.

6. Conclusion and Future Work

We have proposed a framework to simultaneously register multiple range
images. The simultaneous registration problem is redefined as a least- square
problem with an objective function globally constructed with respect to each
range image. For efficiency, we employ k-d tree structure for fast point cor-
respondence search and apply conjugate gradient search in minimizing the
least-square problem for faster convergence. For robustness, we employ the
laser reflectance strength as an additional attribute of the 3D points and search
for “better” point mates based on their distance. Also, M-estimator is used for
robust outlier rejection.



Robust Simultaneous Registration of Multiple Range Images 85

Figure 5.7. A photograph of the Great Buddha in Kamakura City.
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Figure 5.8. M-estimator error v.s. iteration number

For future work, we plan to automate initial estimation of the rigid transfor-
mations to pass to the simultaneous registration program, which is currently
done manually.

Acknowledgments

This research was supported, in part, by Ministry of Education, Culture,
Sports, Science and Technology under the Leading Project, “Development



86 DIGITALLY ARCHIVING CULTURAL OBJECTS

Figure 5.9. Registered Great Buddha.
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Notes
1. Commonly referred to as “global registration” and “multi-view registration”, especially in the graph-

ics community
2. We implemented the registration method in [22] based on the paper, meaning the comparison may

not be fair.
3. With more rough initial hand alignment, the other registration method did not converge.
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Chapter 6

A FAST SIMULTANEOUS ALIGNMENT OF
MULTIPLE RANGE IMAGES

Takeshi Oishi, Atsushi Nakazawa, Ryo Kurazume, and Katsushi Ikeuchi

Abstract This chapter describes a fast, simultaneous alignment method for a large number
of range images. Generally the most time-consuming task in aligning range im-
ages is searching corresponding points. The fastest searching method is the “In-
verse Calibration” method. However, this method requires pre-computed look-
up tables and precise sensor parameters. We propose a fast searching method
using “index images,” which work as look-up tables and are rapidly created with-
out any sensor parameters by using graphics hardware. To accelerate the com-
putation to estimate rigid transformations, we employed a linear error evaluation
method. When the number of range images increases, the computation time for
solving the linear equations becomes too long because of the large size of the
coefficient matrix. On the other hand, the coefficient matrix has the character-
istic of becoming sparser as the number of range images increases. Thus, we
applied the Incomplete Cholesky Conjugate Gradient (ICCG) method to solve
the equations and found that the ICCG greatly accelerates the matrix operation
by pre-conditioning the coefficient matrix. Some experimental results in which
a large number of range images are aligned demonstrate the effectiveness of our
method.

1. Introduction

In the last quarter-century, quite a lot of algorithms for aligning range im-
ages have been proposed. Many of these algorithms are based on the iterative
closest point (ICP) proposed by Besl [1] and are adapted from the method
proposed by Chen [2]. With ICP, corresponding points are searched for as
the closest points between two range images, and a transformation matrix is
computed so that the mean square error of the corresponding points is mini-
mized. The computation is iterated until the mean square error falls below the
threshold value. In Chen’s method, the relative positions of range images are
calculated so that the distance between vertices and the corresponding patches
is minimized. In addition, there is a method to search for correspondences by
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projecting the points along with the ray direction [3, 4]. Since the ICP algo-
rithm tends to be affected by false matching and noise, Masuda et al. proposed
a robust method that uses random sampling and the Least Median Squares Es-
timation method (LMedS) [5].

When the number of range images is very large, a method that simultane-
ously aligns range images is required. The algorithms described above align
two range images; when using these algorithms, error accumulation increases
as the number of range images increases. In such cases, a method that simulta-
neously aligns range images is useful. Neugebauer et al. proposed a simultane-
ous registration method that adopted projection search of correspondences and
point-plane error metric [6]. Benjamaa et al. extended the method proposed by
Bergevin et al. [7] and implemented a simultaneous alignment method while
accelerating the pair-wise alignment algorithm by using multi z-buffers [8].

Although various methods have been proposed, the problem for every method
is the computation cost of correspondence search. If the number of vertices of
two range images is equally assumed to be N by the original ICP, their com-
plexity is O(N 2) since correspondences are searched for in all vertices. In or-
der to accelerate ICP, there are techniques [9, 10] that use Kd-trees and that nar-
row the search range by using data cache [11–13]. However, the complexity of
Kd-tree search isO(NlogN). That is, sufficient acceleration cannot be achieved
by these algorithms. The computational complexity of the inverse calibration
method proposed by Blais is O(N ) [3, 14]. However, this method requires
precise sensor parameters (intrinsic parameters of CCD camera, parameters of
scanning mechanism) and pre-computed look-up tables. In addition, the cre-
ation of the look-up tables is very time consuming because Euclidian distances
between each element of a table and every ray of sampled points have to be
calculated.

Another problem in aligning a large number of range images is the compu-
tation cost of matrix operations in which rigid transformations of range images
are computed. To directly solve a non-linear least squares problem is very time
consuming [10]. In this case, the linearized algorithm is effective in dealing
with a large data set [4]. However, the computation time to solve the lin-
ear equations with conventional solvers (SVD, Cholesky decomposition, etc.)
rapidly increases as the number of range images increases because the coeffi-
cient matrix becomes very large.

We propose a fast method to align a large number of range images simul-
taneously. Our method has three characteristics. 1) The process of searching
corresponding points is accelerated by using index images, which are rapidly
created without sensor parameters. 2) The method employs the point-plane
error metric and linearized error evaluation. 3) An iterative solver (incomplete
Cholesky conjugate gradient method) is applied in order to accelerate the com-
putation of the rigid transformations. In Section 2, the details of our algorithm
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are described. Some experimental results that demonstrate the effectiveness of
our method are shown in Section 3. Our conclusions are described in Section
4.

2. Alignment Algorithm

In this section, the details of our alignment algorithm are explained. We as-
sume that all range images have been converted to mesh models. The algorithm
is applied in the following steps:

1. Compute, for all pairs of partial meshes,
(a) search all correspondence of vertices
(b) evaluate error terms of all correspondence pairs
2. Compute transformation matrices of all pairs for immunizing all errors
3. Iterate steps 1 and 2 until the termination condition is satisfied
First, we explain the fast method to search corresponding points. Then, the

details of error evaluation and the computation of rigid transformations are
described.

2.1 Correspondence Search

Our algorithm employs points and planes to evaluate relative distance as the
Chen and Medioni method [2]. The corresponding pairs are searched along the
line of sight (Fig. 6.1). Here, the line of sight is defined as the optical axis of a
range sensor. Let us denote one mesh as the base mesh and its corresponding
mesh as the target mesh. An extension of the line of sight, from a vertex of the
base mesh, crosses a triangle patch of the target mesh and creates the intersect-
ing point. In order to eliminate false correspondences, if the distance between
the vertex and the corresponding point is larger than a certain threshold value,
the correspondence is removed. This correspondence search is computed for
all pairs of mesh models.

Though the threshold distance is given empirically as l given, it is compared
with the average distance of all corresponding points r̂, and the smaller value
is selected as lth.

lth =
{
lgiven
r̂

(if : lgiven < r̂)
(otherwize) (6.1)

r̂ =
1
N

N∑
i

‖yi − xi‖ (6.2)

N is the number of vertices included in the base mesh.
To search correspondences quickly, our method uses index images. Though

the complexity of this process isO(N, ),the same as that of the inverse calibra-
tion method, sensor parameters are not required. Furthermore, the searching
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Figure 6.1. Searching corresponding points

process can be accelerated by graphics hardware. The details of correspon-
dence search using index images are described below.

2.1.1 Creation of Index Images

An index image works as a look-up table to retrieve the index of correspond-
ing patches. Here, we describe the procedures for creating an index image as
follows:

1 A unique index number is assigned to each triangle patch of a target
mesh.

2 Index numbers are converted to unique colors.

3 Triangle patches of the target mesh are rendered on an image plane with
the index colors.

First, a unique integer value is assigned to each triangle patch. Since the as-
signed value can be any integer number, 0 to n-1 are assigned sequentially,
where n is the number of triangle patches.

Next, the assigned index values are converted to unique colors. If the pre-
cision of index values is the same as that of rendering colors, the index values
are converted directly. Assume that the precision of each color channel is ex-
pressed by qbits. [0 q-1] bits of an index value are assigned to Red, and [q 2q-1]
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Figure 6.2. Rendering of index image

bits to Green, and the next to Blue, and highest q bits are assigned to Alpha. If
the precision is not the same, the indices have to be converted carefully.

All triangle patches are rendered onto an image plane using the index col-
ors (Fig. 6.2). The pixels in which the triangle patches are not rendered are
filled with an exceptional color like white. The target mesh is assumed to be
described in its measured coordinate system.

Projection method
Generally, perspective projection is used for rendering the index images.

Perspective projection works well for the range images that are measured by
sensors that adopt a method like light sectioning. On the other hand, in the case
of range images taken by sensors with scanning mechanisms using mirrors, the
spherical projection is better because the angles between sampled points are
equal (or nearly equal) to each other.

View frustum
To obtain a sufficient number of corresponding points, rendering areas have

to be determined properly. All vertices of a target mesh are projected onto the
index image plane. Then, the rectangular area (umin, vmin, umax, vmax) that
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Zoom imageZoom image

Figure 6.3. Example of index images

involves all projected vertices is obtained. The view frustum is computed so
that all vertices are rendered in this area. Minimum and maximum depths are
also acquired at the projection process.

Image resolution
The resolution of an index image (Lu, Lv) has to be determined as the fol-

lowing conditions are fulfilled.

Lu ≥ 2×w/Δwmin (6.3)

Lv ≥ 2× h/Δhmin (6.4)

w = umax − umin (6.5)

h = vmax − vmin (6.6)

Variables w and h represent the height and width of the rendering area re-
spectively (Fig. 6.2). Δwmin and Δhmin represent the minimum height and
minimum width of all triangles projected onto the index image plane.

The image resolution (Lu, Lv) can be roughly determined so that the con-
ditions described in inequality 4 and inequality 5 are satisfied. Although the
parameters (w, h, Δwmin, Δhmin) are different in each partial mesh, a unique
resolution that satisfies the conditions of all mesh models works well for all in-
dex images.

The rendering process is accelerated by using graphics hardware. The ren-
dering time becomes small enough to ignore even if the images are rendered
at each iterative step. A large memory space for storing look-up tables is not
required. The memory space for only one index image can be shared by all
mesh models. Figure 6.3 shows an example of index images.
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2.1.2 Acquisition of Corresponding Points

By using the index image, corresponding points are rapidly searched. The
procedure for this process is the reverse of that used to make an index image.
Here, we assume that all vertices of the base mesh are previously converted to
the local coordinate system of the target mesh. The following steps are applied
to all vertices of the base mesh:

1 A vertex is projected onto the index image plane by the same projection
method as is used for the index image.

2 A color is obtained from the projected pixel.

3 The obtained color is converted to the index value of a patch of the target
mesh.

4 The vertex is projected onto the corresponding patch; a corresponding
point is acquired.

The procedures are depicted in Fig. 6.4. A vertex of the base image is pro-
jected onto the index image plane. Then, a color is acquired from the projected
pixel and is converted to the index of a corresponding patch. Since a correct
index value may not be obtained because of round-off errors, the vertex is re-
projected onto a corresponding patch, and the crossing point is checked to see
whether it is inside the patch or not. If the crossing point is inside the patch,
the accurate corresponding point is computed. Until the correct correspond-
ing point is obtained, steps 2-4 are applied to 3×3 pixels around the projected
pixel. The computational complexity of this process is also O(N ).

2.2 Error Metric

The error measure between corresponding points is the cosine distance be-
tween the point and the plane. Let the vertex of the base mesh and the corre-
sponding crossing point in the target mesh be �x and �y, respectively. The error
measure of a pair k is written as

ek = �n · (�y − �x) (6.7)

�n =
�nx + �ny
‖�nx + �ny‖ , (6.8)

where �nx and �ny are the normal vectors of �x and �y defined around the vertices
respectively. Since normal vectors tend to be greatly influenced by measure-
ment errors, we used the average normal vectors for error evaluation.

The transformation matrices of the base and target mesh models are com-
puted so that this error measure is minimized. The error evaluation function is
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Figure 6.4. Searching a corresponding patch

rewritten as
ε = RB�n · {(RT�y +�tT)− (RB�x+�tB)} (6.9)

Here, the rotation matrix and the translation vector of the base and target mesh
areRM , RS ,�tM , �tS respectively. To make the function simple, the average nor-
mal �n is assumed to be rotated by the matrix of base range image RB . The
distance between the base and the target mesh is expressed as

ε̄ = min
R,�t

∑
i,j,k

(
Ri�nik · {(Rj�yijk +�tj)− (Ri�xik +�ti)}

)2
(6.10)

If it is assumed that the angles of rotation are minute, the rotation matrix R is
written as

R =

⎛
⎝ 1 −c3 c2
c3 1 −c1
−c2 c1 1

⎞
⎠ (6.11)

The translation vector is expressed as

�t =
(
tx ty tz

)T (6.12)

After some algebraic manipulations [5], equation 4 is rewritten as

ε̄ = min
�δ

∑
i�=j

∥∥∥ �Aijk · �δ − sijk∥∥∥2
(6.13)

sijk = �nik · (�xik − �yijk) (6.14)
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�Aijk =

⎧⎪⎨
⎪⎩
⎛
⎜⎝0...0︸︷︷︸

6i×1

�CT
ijk 0...0︸︷︷︸

6(l−i−1)×1

⎞
⎟⎠ +

⎛
⎜⎝0...0︸︷︷︸

6j×1

−�CT
ijk 0...0︸︷︷︸

6(l−j−1)×1

⎞
⎟⎠
⎫⎪⎬
⎪⎭

T

(6.15)

�Cijk =
(
�nik × �yijk
−�nik

)
(6.16)

�δ = (�m0... �mn−1)T (6.17)

�mi =
(

c1i c2i c3i txi tyi tzi
)T
, (6.18)

where the number of mesh models is n. By (6.13) �δ is written as⎛
⎝∑
i�=j

�AT
ijk
�Aijk

⎞
⎠�δ =

∑
i�=j

�AT
ijksijk (6.19)

2.3 Solving Linear Equations

From Eq. 13, �δ is computed as the solution of linear equations that include
n×6 arguments. However, ambiguity remains in the equation. Then, the first
mesh model is assumed not to be moved. That is, as shown in Fig. 6.5, the
linear equations with ((n-1)×6) × ((n-1)×6) coefficient matrix are solved. If
all mesh models are connected to the first mesh, the coefficient matrix is sym-
metric positive definite. Also, the matrix becomes larger and sparser as the
number of mesh models increases and has 6×6 non-zero patterns as shown in
Fig. 6.5.

Since the computational complexity of direct solvers is too high, we applied
an iterative solver to this problem. The computational complexity of Cholesky
decomposition that is the most popular direct solver for a symmetric positive
definite matrix is O(n3). Then, we employed the pre-conditioned conjugate
gradient method (PCG). Though the complexity of PCG isO(n3), the same as
Cholesky decomposition, the number of iterations can be drastically reduced
by pre-conditioning. We employed incomplete Cholesky decomposition as the
pre-conditioner. Since it is known that the coefficient matrix has 6×6 non-zero
patterns, we implemented the incomplete Cholesky conjugate gradient method
(ICCG) specialized for the matrix pattern.

Assume that the matrix M is the ((n-1)×6) × ((n-1)×6) coefficient matrix
shown in Fig. 6.5. �β is the (n-1)×6 vector that is a part of the right side of Eq.
13. �β does not include the transformations of the first mesh model. Equation
13 is re-written as follows.

M�α = �β (6.20)

�α = (�m1... �mn−1)T (6.21)
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Figure 6.5. Characteristics of coefficient matrix

A matrix C is assumed to be a regular ((n-1)×6)×((n-1)×6) matrix. Equation
14 is written as follows:

C−1M(CT)−1CT�α = C−1�β (6.22)

To simplify the equation, we define the matrix M̃ and the vector �β′ as follows.

M̃ = C−1M(CT)−1 (6.23)

�β′ = C−1�β (6.24)

Equation 16 is redefined by using the variables above.

M̃�α′ = �β′ (6.25)

CT�α = �α′ (6.26)

If the coefficient matrix M̃ is near the identity matrix, solving Eq. 19 is dras-
tically accelerated by the conjugate gradient method. That is, the CTC has to
be nearly equal to the original coefficient matrix M.

M ∼= CTC (6.27)

But the computation cost to decompose the matrix is very high. The matrix M
is incompletely decomposed by the Cholesky decomposition. In this process,
only non-zero areas are computed: other elements are filled with zero[15].

M = UD (6.28)
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Since the matrix M is sparse, the decomposition process is performed very
quickly. Then, matrix C is given as follows:

C = UD1/2 (6.29)

Once matrix C has been computed, rigid transformations are calculated from
Eq. 19 and Eq. 20 by the conventional conjugate gradient method.

3. Experimental Results

In this section, the effectiveness of our method is demonstrated by some ex-
perimental results. Two data sets are used for the experiments. Target objects
are the face of Deva in Cambodia (Fig. 6.6(a)) and the Nara Great Buddha
statue in Japan (Fig. 6.6(b)). The face of Deva was measured by VIVID900.
The resolution of VIVID900 was fixed to 640×480, and the view angle de-
pended on mounted lenses. We used a wide lens for scanning the face of Deva.
The Great Buddha statue was measured by Cyrax2400. The resolution and
view angle of the sensor were flexible: users could change them arbitrarily.
In the scanning of Nara Great Buddha, we adjusted the parameters according
to measurement environments. Generally, 800×800 was used as the measure-
ment resolution. The details of these data sets are shown in Table 1 and Table
2 respectively.

Table 6.1. Data set 1: The face of Deva

Sensor VIVID900
Images 45
Vertices Max: 76612, Min: 38190, Ave: 67674
Triangles Max: 150786, Min: 71526, Ave: 130437

Table 6.2. Data set 2: The Nara Great Buddha

Sensor Cyrax2500
Images 114
Vertices Max: 155434, Min: 11231, Ave: 81107
Triangles Max: 300920, Min: 18927, Ave: 148281

Vertices that measured outside the objects had been removed previously.
Obtained point crowds had been converted into triangle mesh models. Since
the original data sets were too large to deal with using one PC, the sizes of the
data were reduced to 1 / 4.

Our method is evaluated according to the following three criteria:
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Figure 6.6. Target objects (a : the face of Deva, b : the Nara Great Buddha)

1 Number of corresponding points with respect to the resolution of index
images

2 Computation time of matrix operations with respect to the number of
mesh models

3 Computation time of alignment with respect to the number of vertices

The PC used for the experiments had Athlon MP 2400+ processor, 2Gbyte
memory, and a GeForce4Ti4600 graphics card.

3.1 Number of Corresponding Points with the Resolution
of the Index Image

The number of corresponding points is evaluated with respect to the reso-
lution of the index image. As described above, if enough resolution cannot be
assigned to the index image, all triangle patches are not rendered: all the corre-
sponding points cannot be acquired. Here, the relation between the resolution
of index images and the number of corresponding points is verified.

Corresponding points were searched for several pairs of mesh models by
gradually changing the resolution of index images. We selected a set of mesh
models that have minimum and maximum number of triangle patches from
each data set as target meshes. Base meshes were arbitrarily selected. Exper-
imental results are shown in Fig. 6.7. The vertical axis represents the ratio of
the number of corresponding points acquired by our method v’ c to the ground
truth vc. The resolutions of index images are represented in the horizontal axis
as the square root of total pixels.
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Figure 6.7. Number of corresponding points with resolution of index images

As shown in Fig. 6.7, when the resolution of the index image becomes
larger than a certain size (800×800), almost all of the corresponding points
are obtained. Furthermore, the resolution required for obtaining enough cor-
responding points becomes larger as the number of triangle patches of target
mesh increases. In fact, instead of the number of triangle patches, the mea-
surement resolution is concerned with the required index image resolution.
However, in this case, it can be said that the number of triangle patches has the
similar characteristics with the measurement resolution because the sampled
points are distributed densely and uniformly in both vertical and horizontal
directions.

It is not required to estimate the image resolution for each mesh model.
Even if, due to any problems, for example the limitation of graphics memory
space, a large enough resolution cannot be assigned to the index image, several
corresponding points are acquired in compliance with the image resolution.

3.2 Time to Solve the Linear Equations

The computation time to solve the linear equations is evaluated. As de-
scribed above, the computation time to solve the linear system is greatly in-
fluenced by the number of mesh models. Thus, the relation between the com-
putation time and the number of mesh models is evaluated here. Data set 2 is



102 DIGITALLY ARCHIVING CULTURAL OBJECTS

0

200

400

600

800

1000

1200

0 25000 50000 75000 100000 125000 150000

Number of vertices

T
im

e(
m

s)
Face of Deva
Nara Great Buddha

Figure 6.8. Time to solve linear equations

used for this experiment. The computation time of the matrix operations only
is sequentially measured by changing the number of mesh models.

The experimental results are shown in Fig. 6.8. The horizontal axis repre-
sents the number of mesh models, and the vertical axis represents the compu-
tation time. The results with usual Cholesky decomposition are also shown in
this figure in comparison with our method. The threshold value of the ICCG
was set to 1.0 × 10−6.

In the case that the number of mesh models is lower than 60, Cholesky de-
composition is faster than our method. On the other hand, the computation
time of our method increases at a slow rate and becomes smaller than that of
Cholesky decomposition when the number of mesh models is higher than 70.
Moreover, the differences between Cholesky decomposition and our method
become larger as the number of mesh models increases. That is, it can be said
that ICCG is effective for aligning a large number of mesh models simultane-
ously.

3.3 Computation Time with Number of Vertices

The computation time is evaluated with respect to the number of vertices
included in the mesh models. In this experiment, it is proven that the compu-
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tational complexity of aligning a pair of mesh models is O(N ), where N is
the number of vertices. It can be also said that the complexity of searching
corresponding points is O(N ) because it can be assumed that the computation
time of another task is small enough to ignore.

Each mesh model was aligned to itself so that the number of vertices of base
model and target model were equal to each other. Since the number of corre-
sponding points also affects the computation time, all mesh models were not
moved. That is, the amount of movement is infinitely zero; the number of cor-
responding points is nearly equal to the number of vertices. Index images were
rendered at each iterative step. The image resolution was fixed to 800×800.
The computation time was evaluated according to the average time taken for
20 iterations.

Experimental results are shown in Fig. 6.9. The horizontal axis represents
the number of vertices, and the vertical axis represents the computation time.
It is clear that the computation time is increasing linearly with the number of
vertices. Moreover, there are no differences between two data sets though these
data were taken by different sensors. That is, the efficiency of our method does
not depend on the sensors used for measurements.
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Figure 6.10. Alignment results (the face of Deva)

3.4 Alignment Results

The alignment results of these data sets are shown in Fig. 6.10 and Fig. 6.11.
Previously, we had aligned all mesh models one by one. Then we applied
the simultaneous alignment method to these models. Figure 6.10 shows the
alignment results of data set 1. The total computation time was 1738 seconds
after 20 iterations. Figure 6.11 shows the results of data set 2. The number of
iterations was 20, the same as for data set 1. Total computation time was 7832
seconds. The figures show that all mesh models were correctly aligned.

4. Conclusion

In this chapter, we proposed a fast, simultaneous alignment method for a
large number of range images. In order to accelerate the task of searching
corresponding points, we utilized index images that are rapidly rendered using
graphics hardware and are used as look-up tables. Instead of sensor parameters,
only an approximate resolution of index images is required for this search.
In order to accelerate the computation of rigid transformations, we employed
a linearized error function. Since the computation time to solve the linear
system becomes large as the number of range images increases, we applied
the incomplete Cholesky conjugate gradient (ICCG) method. Experimental
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Figure 6.11. Alignment results (Nara Great Buddha)
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results showed the effectiveness of our method. One of our future works will
be to improve the accuracy of alignment results.
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Chapter 7

PARALLEL ALIGNMENT OF A LARGE NUMBER
OF RANGE IMAGES

Takeshi Oishi, Ryusuke Sagawa, Atsushi Nakazawa, Ryo Kurazume, and Kat-
sushi Ikeuchi

Abstract This chapter describes a method for parallel alignment of multiple range im-
ages. There are problems of computational time and memory space in aligning a
large number of range images simultaneously. We developed a parallel method
to address the problems. Searching for corresponding points between two range
images is time-consuming and requires considerable memory space when per-
formed independently. However, this process can be preformed in parallel, with
each corresponding pair of range images assigned to a node. Because the com-
putation time is approximately proportional to the number of vertices, by as-
signing the pairs so that the number of vertices computed is equal on each node,
the load on each node is effectively distributed. In order to reduce the amount
of memory required on each node, a hypergraph that represents the correspon-
dences of range images is created, and heuristic graph partitioning algorithms
are applied to determine the optimal assignment of the pairs. Moreover, by re-
jecting redundant dependencies, it becomes possible to accelerate computation
time and reduce the amount of memory required on each node. The method was
tested on a 16-processor PC cluster, where it demonstrated high extendibility
and improved performance.

1. Introduction

As described in the previous chapters, various alignment methods have been
proposed in the last quarter century [1–4]. These methods are based on the
Besl’s ICP (Iterative Closest Point) [5] and the Chen’s registration method [6].
Since the problem for every method is the computation cost of correspondence
search, Kd-trees and the other data structures are used for the correspondence
search to improve the computational efficiency [7–11]. When a large number
of range images are aligned, simultaneous algorithms are employed in order to
avoid error accumulation [12–14].
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Despite the many alignment algorithms, it is difficult to align the large num-
ber of range images that our activities involve. When such algorithms are
used, the computation time increases exponentially with the number of range
images, and it is necessary to read all range images into memory. Although a
method in which all range images are not required to be kept in memory has
been proposed [15], completely correct correspondences between all pairs of
range images have to be previously computed in this method. The method also
requires many interactive operations and is very time consuming. The paral-
lel ICP algorithm [16] which is implemented on a PC cluster accelerates the
correspondence search by parallel processing. However, the method does not
consider the memory requirements.

Therefore, we need a method in which the computation time is short, the
amount of memory used is small, and the extendibility is high. It is also
thought that the amount of data will increase along with the development of
measurement technology. In addition to the computational time and memory
requirements, extendibility of the alignment system is one of the important
factors.

In this chapter, we propose a parallel simultaneous alignment method that
improves both the computational efficiency and the memory usage. The method
is implemented on a PC cluster that is cheap and highly extendible. In Section
2, the fundamental alignment algorithm is described. In Section 3, we present
the algorithm of parallel computation. Sections 4 and 5 contain the evaluations
of this algorithm and the alignment results of a large number of range images,
respectively. Our conclusions are presented in Section 6.

2. Simultaneous Alignment Algorithm

In this section, the outline of the fundamental alignment algorithm is ex-
plained. We assume that all range images have been converted to mesh models.
The algorithm is applied in the following steps:

1. Compute, for all pairs of partial meshes,
(a) search all correspondence of vertices
(b) evaluate error terms of all correspondence pairs

2. Compute transformation matrices of all pairs for immunizing all errors
3. Iterate steps 1 and 2 until the termination condition is satisfied
Our algorithm employs points and planes to evaluate relative distance as the

Chen and Medioni method [6]. The corresponding pairs are searched along
the line of sight. Here, the line of sight is defined as the optical axis of a range
sensor. Let us denote one mesh as the base mesh and its corresponding mesh
as the target mesh. An extension of the line of sight, from a vertex of the base
mesh, crosses a triangle patch of the target mesh and creates the intersecting
point. In order to eliminate false correspondences, if the distance between the
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vertex and the corresponding point is larger than a certain threshold value, the
correspondence is removed. This correspondence search is computed for every
pairs of mesh models.

The error measure between corresponding points is the cosine distance be-
tween the point and the plane. Let the vertex of the base mesh and the corre-
sponding crossing point in the target mesh be �x and �y, respectively. The error
measure between the pairs is written as

−→n · (−→y − −→x ) (7.1)

where �n is the normal of �x defined around the vertex.
The transformation matrices of the base and target mesh models are com-

puted so that this error measure is minimized. The error evaluation function is
rewritten as

ε = RB�n · {(RT�y +�tT)− (RB�x+�tB)} (7.2)

Here, the rotation matrix and the translation vector of the base and target mesh
areRM , RS,�tM , �tS respectively. The distance between the base and the target
mesh is expressed as

ε̄ = min
R,�t

∑
i,j,k

(
Ri�nik · {(Rj�yijk +�tj)− (Ri�xik +�ti)}

)2
(7.3)

If it is assumed that the angles of rotation are minute, the rotation matrix R is
written as

R =

⎛
⎝ 1 −c3 c2
c3 1 −c1
−c2 c1 1

⎞
⎠ (7.4)

The translation vector is expressed as

�t =
(
tx ty tz

)T (7.5)

After some algebraic manipulations [12], (7.3) is rewritten as

ε̄ = min
�δ

∑
i�=j,k

∥∥∥ �Aijk · �δ − sijk∥∥∥2
(7.6)

sijk = �nik · (�xik − �yijk) (7.7)

�Aijk =

⎧⎪⎨
⎪⎩
⎛
⎜⎝0...0︸︷︷︸

6i×1

�CT
ijk 0...0︸︷︷︸

6(l−i−1)×1

⎞
⎟⎠ +

⎛
⎜⎝0...0︸︷︷︸

6j×1

−�CT
ijk 0...0︸︷︷︸

6(l−j−1)×1

⎞
⎟⎠
⎫⎪⎬
⎪⎭

T

(7.8)

�Cijk =
(
�nik × �yijk
−�nik

)
(7.9)
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�δ = (�m0... �mn−1)
T (7.10)

�mi =
(

c1i c2i c3i txi tyi tzi
)T (7.11)

where the number of mesh models is n. By (7.6) �δ is written as⎛
⎝∑
i,j,k

�AT
ijk
�Aijk

⎞
⎠�δ =

∑
i,j,k

�AT
ijksijk (7.12)

3. Parallel Alignment Based on a PC Cluster

In the simultaneous alignment operations described in Section 2, 1(a) corre-
spondence search and 1(b) error evaluation require a large amount of compu-
tational time. They also require data space to read in data of all vertices. On
the other hand, these two operations can be conducted independently in each
pair of partial mesh models. Computation of transformation in step 2 does not
require much computational time or memory space. Thus, we designed corre-
spondence search and error evaluation in step 1 to be conducted in slave PCs
in a PC cluster, and computation of transformation in step 2 to be conducted in
a master PC.

3.1 Graph Simplification

We remove redundant or weak data dependency relations of partial mesh
models for the sake of efficiency in parallel computation. Figure 7.1 shows
overlapping data-dependency relations. Each node in the graph represents
one mesh model, and each arc represents an overlapping dependency relation
among mesh models. The left graph shows the original state in which all the
mesh models overlap each other. If we conduct alignment of one mesh as is,
we would have to read into a PC’s memory all the remaining mesh models. By
removing some of redundant overlapping dependencies, we can transform the
original graph into a simpler one as shown in the right figure. By using this
simpler relational graph, we only need adjacent data with respect to a vertex
for alignment of a vertex, and we can reduce the necessary memory space.

We will remove the dependency relation between the two mesh models if
any of the mesh pairs does not satisfy any one of the following four conditions:

1. The bounding-boxes of two mesh models overlap each other.

A sufficient overlapped region exists between two mesh models, provided that
initial positions of two meshes are accurately estimated.
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Range image

Slave0 Slave1

Slave2Pair
Range image

Slave0 Slave1

Slave2Pair

Figure 7.1. Data dependency relations

2. The angle θ between ray directions of two mesh models is less than a
threshold value.

Two observation directions of the meshes are relatively near. This condition
also reduces the possibility of false correspondences between front- and back-
side meshes, by setting the threshold, as θ=90 o. We could use a more ac-
curately estimated value for this threshold, but since this value is used as a
constraint to reduce the possibility described above, we use this θ=90 o for the
sake of safety and simplicity.

3. The overlapping area of two meshes is larger than a threshold value.

Overlapping area is expressed as the ratio of the number of vertices included in
one mesh model and the number of corresponding points between two meshes.
Corresponding points are searched for a few vertices selected randomly. We
used 10% of the vertices for this search. A pair whose overlapping area is
less than threshold value will be removed as weak data dependency. We set the
threshold value as 0.03 to 0.05. Since the computation of overlapping areas can
be performed independently and sequentially for each pair, the computations
are performed easily in parallel without the problem of memory usage.

4. Two range images are adjacent to each other.

This condition removes non-adjacent relations sequentially. For example, as
shown in Fig. 7.2, if the length from I0 to I3 is larger than the length from I1

to I3 (l01 < l03), the arc between I0 and I3 is removed. Here, the distance
is evaluated from the center of a mesh model.
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Figure 7.2. Non-adjacency relation

3.2 Parallelization by Graph Partitioning Algorithms

The problem of load balancing with a minimum amount of required mem-
ory is an NP-hard problem. It is difficult to obtain an optimal solution in a
reasonable time. Alternatively, we employ an approximation method to solve
this problem by applying heuristic graph-partitioning algorithms.

3.2.1 Pair-Node Hyper-Graph

First, we define the pair-node hyper-graph. The left image of Fig. 7.3 shows
a graph that expresses the relations of partial meshes In. The graph is con-
verted to the hyper-graph in which each node expresses pairs P i,j of two partial
meshes i and j, and networks represent meshes, as shown in the right figure of
Fig. 7.3. We refer to it as a “pair-node hyper-graph.”

The weight of the network W net
i is defined as the number of vertices vi in

the partial mesh, i; the weight of the node W node
i,j is defined as the sum of the

number of vertices vi and vj .

Wnet
i = vi (7.13)

Wnode
i,j = vi + vj (7.14)

A pair-node hyper-graph is partitioned so that the sum of the node weights in
each subset is roughly equal for computational load balance, and summation of
all the net-weight in each subset is minimized for efficiency of memory usage.

It is necessary to consider both node weights and net weights in optimiza-
tion, even though they are related to each other, and using them seems to be
redundant. Reducing the computational load requires each sub-group to have
equal values in the node-weights. On the other hand, even when a hyper-graph
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Figure 7.3. Pair node hyper-graph

is portioned equally in terms of node-weight, depending on the method, each
sub-group has different memory usage. Let us consider the example, shown
in Fig. 7.3, to divide the hyper-graph into two sub-graphs. For the sake of
simplicity, we assume that all node-weights and net-weights are the same in
all the nodes and all the networks. When the hyper-graph is divided into two
groups, {P0,2, P1,3, P2,3} and {P0,1, P0,3}, the node balance is achieved in two
sub-graphs. The first sub-graph needs to load in all the data {I 0, I1, I2, I3}.
The maximum value in sums of net-weights is four units. When the hyper-
graph is divided into two groups, {P 0,2, P0,3, P2,3} and {P1,3, P0,1}, each
sub-group needs only to load in three data sets. The maximum value in the
sum of net-weights is three units. In these two cases, both portioning methods
have roughly equal load balance in terms of node-weights, but have different
memory usage. When we divide the graph by considering only memory usage,
it is not guaranteed that each sub-graph has equal load balance. Thus, we will
consider both node-weights and net-weights in the optimization procedure.

3.2.2 Initial Partitioning

The pair-node hyper-graph is initially partitioned so that the sum of the
node-weights in each subset is roughly equal. Spectral bisection methods
[17, 18] that minimize the edge-cut by using second eigenvector are widely
available, but it is difficult to apply the method to our problem. Intelligent
graph growth algorithm [19] can obtain a fairly optimal solution in a small
computation time. However, this method tends to be trapped in a poor parti-
tioning [20]. We used the random seeded breadth first search method for initial
partitioning. Since the sum of net-weight included in each subset is greatly
influenced by the selection of the seed, we created initial partitions for multi-
ple seeds and adopted the partition in which the sum of net-weight included is
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minimized. In order to obtain k-way partitions, the recursive bisection method
is used. After logk phases, the hyper-graph is partitioned into k sub-graphs.

3.2.3 Refinement of the Partition

The partitioned graphs are refined so that the sum of net-weights included
in each subset graph is minimized. We improved the KLFM algorithm, which
is an iterative refinement algorithm. The algorithm moves a node from one
partition to another so that the operation causes the greatest improvement in the
cut-size. While the original KLFM algorithm moves a node at one iteration,
our method moves a net at one iteration. That is, all nodes connected to the net
are moved at the same time. For k-way refinement, the subset graph of which
the sum of net-weight is maximum weight is computed with all other subsets.
The refinement process is reiterated until there is no more improvement.

The net gain is computed for all nets along the boundary of two subset
graphs. Now, we consider the kth net at the boundary between the subset
graphs, Gi and Gj . In the case where the net N(i,j),k is moved to Gi, the
gain gi,j,k is expressed using two values: D int

i,j,k, the variation of the sum of net
weight of Gi, and Dext

i,jk, the variation of the sum of net-weight of G j .

gi,j,k = Dext
i,j,k −Dint

i,j,k. (7.15)

On the other hand, in the case where N(i,j),k is moved to Gj , the gain gj,i,k is
expressed in the similar way as

gj,i,k = Dext
j,i,k −Dint

j,i,k. (7.16)

The two lists, Li,Lj , , consisting of all gains of the all nets at the boundary, are
created. The list with the larger sum of the total node-weight (computational
time) is selected for consideration of the movement, and the components, can-
didate nets in the list, are processed one by one in descending order of the gain.
At each movement of one net, all nets and nodes concerned with the net are
updated, and the moved net is locked in order to avoid thrashing. The sum
of the net-weight (memory usage) and the moved net’s ID are also recorded
at each movement. After all nets are moved, the minimum value of the sum
of the net-weight (memory usage) is compared with the value at the starting
stage. If the minimum value is smaller than that of the starting state, the cor-
responding movement-sequence is performed, and the next iteration begins. If
not, the refinement process is terminated. See Fig. 7.4 for the flow chart of the
refinement process.

3.3 Implementation

We implemented our method as a master/slave system. The procedures of
the computation is are as follows
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Finish
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Figure 7.4. Flowchart of refinement process

Algorithm Procedure of Parallel Alignment
/* Check correspondence of all pairs of the partial meshes */
Create-Pair-Table();
/* Create the lists of the files for each processor */
Create-File-Lists():
while(error > threshold){

/* Slave Process*/
for(i = 0; i < nmeshes; ++i)

for(j = 0; j < nmeshes; ++j)
Whether-i-and-j-overlap-each-other?{
Correspondence-Search(i, j);
Calculation-Each-Matrix(i, j);

}
/* Master Process */
CalculationMatrix(all);
/* Master & Slave process */
UpdatePosition();

}
The master program holds bounding-boxes and transformation matrices from

initial position to current position of all partial meshes, checks all pairs, and
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creates the list of computations for each node. The pairs list for each slave is
computed at the beginning of the entire iteration process based on the relational
table using the algorithm described above. The slave programs receive the lists
and read the required partial meshes into memory. Then, each slave computes
the matrices ATijkAijk and ATijksijk in (7.12) independently, and sends the ma-
trices to the master program. The master program computes the transformation
matrices of all range images from the matrices ATijkAijk and ATijksijk received
from the slave programs. The results are applied to all master/slave data. Each
iteration process is continued until the error falls below a certain threshold
value.

4. Performance Evaluation

This method was implemented on a PC cluster that consisted of 8 PCs. Each
PC had dual AthlonMP2400+ processors and 4Gbytes of memory, and was
connected by 100Base-TX ethernet. The range images used for evaluation
were 50 images created artificially from the complete 3D model of the Great
Buddha of Kamakura. Figure 7.5 shows the original 3D model of the statue
and the partial mesh models created artificially. These mesh models contain an
average of 83,288 vertices and 158,376 patches.

In this section, our method is evaluated from the viewpoints of convergence
and accuracy, computation time, and memory usage.

(a) Original model (b) Created mesh models

Figure 7.5. Partial mesh models for evaluations



Parallel Alignment of a Large Number of Range Images 119

4.1 Convergence and Accuracy

Because our method rejects redundant dependencies, the influence of the
rejection on convergence and accuracy has to be evaluated. In this case, the
number of all pairs is 2,450, but it is reduced to 160 by the rejection process.
We needed to verify whether accurate convergence is performed even when
the number of pairs becomes very small. Virtually created mesh models have
accurate positions of measured points, so convergence and accuracy can be
evaluated by the distance between an accurately aligned mesh model and the
target mesh model. The distance between two meshes is defined as an aver-
age of the Euclidean length of all vertices. Each mesh model added Gaussian
noise along the line of sight at maximum length 10mm. All mesh models were
moved at random in the maximum length of 100mm in the directions of x,
y, and z, respectively, and rotated at random in the maximum angle of 0.05
radians to the x-axis, y-axis, and z-axis, respectively.

Figure 7.6. Convergence with original method

The results of the original method and our method are shown in Figures
7.6 and 7.7, respectively. The threshold distance for rejecting outliers while
searching for correspondences is changed gradually. Although both the origi-
nal method and our method do not converge at the correct positions when the
threshold distance is 5m, our method converges at a better position than the po-
sition of the original method. Although the convergence speed of our method
is slower than that of the original method, our method tends to converge at a
better position than the position of the original method. It is thought that this is
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Figure 7.7. Convergence with our method

because the rejection of redundant pairs reduces false correspondence of mesh
models. A feature of the alignment algorithm that we used is that it tends to
be influenced by false correspondence and noise. Therefore, by rejecting re-
dundant pairs, transformations are accurately estimated. When the threshold
values are 0.1m and 0.5m, the error converges at approximately 0. So we see
that accurate estimation is acquired by our method.

4.2 Computational Efficiency

Here, the computation time is evaluated. Computation time is defined as the
time taken for one iteration, and an average of time of all iterations is used for
the evaluation. Figure 7.8 shows the time ratio with the number of processors.
Computation time Tn is expressed as the ratio to the computation time with one
processor T0. This figure shows that the computation time is linearly improved
as the number of processors increases. Moreover, our method improves com-
putation time in a predictable way unlike the sequential method in which the
mesh models are assigned in arbitrary selected order. The actual computation
time with one processor averages 20560ms, and the computation time with 16
processors averages 1784ms. Thus, the computation time with 16 processors
is approximately 11.5 times faster than that with 1 processor.
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Figure 7.8. Computational Efficiency

4.3 Amount of Required Memory

Next, the evaluation of memory performance is shown. The amount of
memory usage is shown in Fig. 7.9 with the number of processors. Each
value shows the ratio of the amount of memory used with a single processor. It
appears that the amount of required memory decreases as the number of pro-
cessors increases. Compared with the sequential method, the performance is
highly improved by our method. An actual maximum size of required memory
with a single processor is 269Mbytes and that with 16 processors is 48Mbytes.
Therefore, our method could reduce the amount of memory used by approxi-
mately 17% for these mesh models.

5. Experimental Results

In this section, we will show the result of parallel alignment of a large num-
ber of range images that could not be aligned by one PC because of limitation
of memory space. We used the following two sets of partial mesh models.

Model-1. 114 mesh models that measured the Great Buddha of Nara by
Cyrax2400. These models contain an average of 327,470 vertices and 606,072
meshes.
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Figure 7.9. Required memory

Figure 7.10. Alignment result (Nara Buddha)
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Figure 7.11. Alignment result (Bayon)

Model-2. 210 mesh models that measured the Bayon Temple in Cambo-
dia by Cyrax2500. These models contain an average of 433,785 vertices and
798,890 meshes.

Due to the limitation of memory space, the minimum numbers of processors
required for aligning these data sets were 2 and 4 for Model-1 and Model-2,
respectively. The alignment results computed by the minimum and maximum
numbers of processors are shown in Table 1 and Table 2. These tables show
the average computation time, the maximum amount of memory usage, and
the minimum amount of memory usage.

Table 7.1. Total performance (Nara)

Processors Ave. Time(s) Max. Mem(MB) Min. Mem(MB)
2 76 1287 1275
16 13.2 292 254

Table 7.2. Total performance (Bayon)

Processors Ave. Time(s) Max. Mem(MB) Min. Mem(MB)
4 103.9 1608 1456
16 40.2 559 472
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In the case of Model-1, the computation time with 16 processors is 5.75
times faster than that with 2 processors, and the amount of required memory is
reduced by 22.6%. For Model-2, the computation time with 16 processors is
2.58 times faster than that with 4 processors, and required memory is reduced
by 34.8%. As for the size of required memory, these results show an improve-
ment better than that described in the previous section (30% for 2-16 and 47
% for 4-16). On the other hand, in the case of Model-2, although the num-
ber of processors is quadrupled, the reason the computation time is not greatly
improved (2.58 times) is that the time taken for calculation of the transforma-
tion matrix, which is not parallelized and is performed on the server program,
is lengthened. An actual computation time taken by the server program is an
average of 14 seconds, and is 35% of the total time taken for one iteration.

Figures 7.10 and 7.11 show the alignment results of the Great Buddha of
Nara and the Bayon Temple in Cambodia, respectively. Alignment takes ap-
proximately 5 minutes for 20 iterations for Model-1 and approximately 15 min-
utes for Model-2.

6. Conclusion

In this chapter, we have proposed the parallel method for simultaneous
alignment of multiple range images. In considering time performance and
memory performance, we parallelized the alignment algorithm. Then, we im-
plemented this method on a PC cluster, and showed its validity by aligning
a large number of range images simultaneously. Future work will deal with
accelerating the computation of transformation matrices.
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Chapter 8

SIMULTANEOUS DETERMINATION OF
REGISTRATION AND DEFORMATION
PARAMETERS AMONG 3D RANGE IMAGES

Tomohito Masuda, Yuichiro Hirota, Ko Nishino, and Katsushi Ikeuchi

Abstract The conventional registration algorithms are mostly concerned with the rigid-
body transformation parameters between a pair of 3D range images. Our pro-
posed framework aims to determine, in a unified manner, not only such rigid
transformation parameters but also various deformation parameters, assuming
that the deformation we handle here is strictly defined by some parameterized
formulation derived from the deformation mechanism. In this point, our pro-
posed framework is different from the deformation researched in such field as
the medical imaging.

Similar to other conventional registration algorithms, our algorithm is for-
mulated as a minimization problem of the squared distance sum between the
corresponding points among a pair of range images. While the conventional
registration algorithms mainly minimize this sum concerned about 6 parameters
(3 translation and 3 rotation parameters), the evaluation function in our pro-
posed algorithm includes those deformation parameters as well. Our proposed
algorithm can be applied to a wide range of application areas of computer vision,
in particular, shape modelling and shape analysis. In this chapter, we describe
how we formulated such an algorithm, implemented it, and evaluated its perfor-
mance.

1. Introduction

A 3D data registration algorithm determines the translation and rotation
parameters between a pair of the corresponding 3D range images. The algo-
rithm solves the nonlinear equation to minimize the distance between a pair of
corresponding 3D range image with respect to the 6 unknown parameters (3
translation and 3 rotation parameters).

3D data registration has wide application areas. In the research of modeling
objects in the real world, it is necessary to have multiple observations of the
object in order to cover the whole surface of the object. Aligning these partial
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3D data using the registration algorithm is one of the crucial steps to complet-
ing the 3D surface model of the object. The registration algorithms are also
used to compare the shape difference between similar objects for the industrial
inspection of manufacturing accuracy. In archeological applications, there is
a need to observe the shape deformation, e.g. the deterioration process over
time. Due to these reasons, many registration algorithms have been proposed.

Some applications, however, require determining more parameters than just
the 6 translation and rotation parameters. For simple example, when compar-
ing 3D data of two objects with the same shape but different size, we have to
determine the scaling parameter in addition to the six translation and rotation
parameters. It is also the case when aligning the data of a deformable object.
When we replace a part of the range data, such as the cylinder, with a CAD
primitive model in order to reduce the data amount or refine its shape, the pa-
rameter of the CAD primitive shape, the diameter and the height in cylinder
case, should be determined from the measured data by fitting the primitive to
the range data. The conventional registration algorithm cannot solve these
problems because it formulates the registration only as a rigid-body transfor-
mation.

In this chapter, we propose the extended framework of the conventional
registration algorithm to overcome these difficulties. This kinds of registra-
tion, namely, deformation registrations have been researched in such field
as the medical imaging [1–5], and the target object for the registration is
mainly the soft tissues. They adopt similarity, affine, quadric/superquadric,
and displacement-field-based transformation so that their deformation works
well for any kind of target shape.

These methods can be generally adopted in shape modelling and fitting.
However, if the deformation is strictly defined by some parameterized formu-
lation derived form the deformation mechanism, the deformation is much more
accurate when using its formulation and their methods are no other than the ap-
proximated ones. The parameters obtained from the strict formulation have the
essential meaning concerned about the cause and origination of the deforma-
tion. So our framework pays as much attention to the obtained parameters as
to the appearance result of the deformation. In this point, our aim is different
from theirs. So in our assumption that the shape changes are strictly repre-
sented with a mathematical formula including some variable parameters and
its formula is known a priori, we formulate the generally extended registration
which allows the 3D data to be deformed and determines both deformation and
translation and rotation parameters.

The remainder of this chapter is organized as follows. Section 2 reviews the
conventional registration in terms of their robustness. Our proposed formu-
lation need to be robust because our algorithm becomes sensitive to incorrect
matching correspondence due to the parameter incrementation. Section 3 de-
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scribes the design and implementation of the robust rigid-body transformation
as a basis of our extended framework. Section 4 presents how we extend the ba-
sic algorithm in order to be able to handle the deformation parameters. Section
5 and 6 describe how to apply our proposed algorithm to the actual applica-
tions. In particular, we determine the shape parameters of a plaster function
model made in 19th century for mathematical education . Another example of
our registration algorithm is to align two range images obtained from a stably
set laser range sensor and a floating laser range sensor, referred to as a Flying
Laser Range Sensor (FLRS). Due to the floating characteristics, the second
sensor causes data distortion. Our algorithm can determine both translation
and rotation and distortion parameters. We also evaluate the accuracy of these
algorithms. Finally, Section 7 summarises this chapter with the conclusion and
the future work.

2. Related Work

One of the most fundamental algorithms for 3D data registration is the It-
erative Closest Point (ICP) algorithm proposed by Besl and McKay [6]. This
algorithm framework reduces the registration to the minimization problem
of the distance sum between the corresponding data by the iterative calcula-
tion. The function minimization with respect to the transformation parameter
leads the optimal one which represents the plausible transformation between
the aligning data pieces, for example, 3 translation and 3 rotation parameters in
case of the rigid-body transformation. This framework is extended in various
way, and we can classify them from the viewpoint of the registration ordering,
matching unit, and error metric.

2.1 Registration Ordering

In the registration of multiple sets of 3D data, its ordering affects the con-
vergence of the final result. The sequential ordering chooses a corresponding
pair of data piece at each iteration for the registration, and repeats this process
until all the data pieces are aligned [7]. Its computation cost is lower because
only two data pieces are handled at each registration. However, it is suscepti-
ble to registration failure since the registration errors are locally accumulated
and this causes the local discrepancy of the registration result.

In contrast, the simultaneous ordering aligns all the data together at each
iteration. Although its computation cost is higher, it enables more accurate
registration because the registration error is distributed globally.

2.2 Matching Unit

There are two kinds of matching units in the ICP algorithm: the geometric
feature points and all the points in the range images. Assuming that one-to-one



130 DIGITALLY ARCHIVING CULTURAL OBJECTS

Alignment Failure!

Figure 8.1. Illustration of registration failure in sequential strategy. The data are sequentially
aligned counterclockwise in order from the red data and the black data, and the accumulated
error prevented the black and red data from the correct registration.

correspondence is taken among all the feature points, the feature point match-
ing doesn’t change its correspondence at any iteration [8] [9]. So it cannot
achieve the accurate registration in case that the correspondence cannot be
taken precisely. The all point matching updates the correspondence so that it
can be more plausible as the iteration proceeds [10] [11], and therefore can
achieve more accurate registration as Rusinkiewicz et. al. reported [12].

2.3 Error Metric

As the error metric, the point-to-point or point-to-plain distance of the match-
ing unit is mainly used [13] [14]. Some of other algorithm adopt such addi-
tional information as the reflectance(the reflection ratio of the laser ray) and
color of the captured point as the error metric [15].

3. Robust Determination of Translation and Rotation
Parameters

Our basic registration algorithm is designed to robustly determine transla-
tion and rotation parameters as accurately as possible even by sacrificing its
convergence speed. The accurate convergence is more important factor to be
considered than the rapid convergence because our final objective is to deter-
mine the deformation parameters in addition to the translation and rotation
parameters.

3D data, obtained by the laser range sensor, generally has considerable mea-
surement noise , such metric as normals cannot be estimated from the point
cloud with acceptable reliability. Therefore, the closest point-to-point distance
should be employed as the error metric as described in [12]. To cope with
erroneous measurement, the simultaneous ordering is adopted.
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Again, our basic registration algorithm aligns the closest points together
with all data pieces simultaneously so as to minimize the sum of distance of
point-to-point distance. The minimization of the error function is represented
as follows:

E(p) =
∑
i

∑
j

ρ(zij(p)), (8.1)

where

p = (t, q), (8.2)

zij(p) = ||R(q)xi + t − yji||2, (8.3)

ρ(zij(p)) = log(1 +
1

2σ2
zij(p)), (8.4)

t : translation vector,
R(q) : rotation matrix corresponding to quaternion q,
xi : ith point in the data set of interest,
yji : the corresponding point of xi,

in the jth measured data,
ρ(zij(p)) : Lorentz function as the M-estimator.

This equation shows that the weight is added to the straightforward least-square
objective function.

The range images are aligned iteratively by moving (translating/rotating) the
measured data according to the estimated parameters. The movement is deter-
mined such that the total sum of distance between the corresponding points is
minimized. As for the rotation matrix, we use the quaternion representation
with 3 degree of freedom. Finally, we solve the 6-dimensional vector p in
order to minimize the sum of zij(p) for all i, j.

In the direct square sum error function, considerable noise leads to the im-
precise registration of 3D data because the exact correspondences between the
noisy data in the initial step is unavailable. The erroneous correspondences
must be removed before registration. In this algorithm, M-estimation is used
for noise elimination (Function 8.4) by considering the probability distribution
of the error. Lorentz function is used here since it yields the best result as
written in [16].

On this error metric E(p), we compute the parameters p which fulfill the
following equation:

popt = arg min
p
E(p). (8.5)

For the gradient-based solution of the non-linear optimization, The descent
gradient is computed as follows:

∂E

∂p
=

∑
i

∑
j

∂ρ(zij)
∂zij

· ∂zij
∂p
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=
∑
i

∑
j

1
2σ2 + zij(p)

∂zij
∂p

. (8.6)

If we evaluate∂zij/∂p by identifying quaternion qI , we can represent ∂zij/∂p
as

∂zij(p)
∂p

= 2(R(q)xi + t− yji)
∂(R(q)xi + t − yji)

∂p

∣∣∣∣
qI

=
[

2(xi + t − yji)
−4xi × (t− yji)

]
. (8.7)

4. Simultaneous Determination of Deformation
Parameters

Our proposal assume that the deformation can be represented by some pa-
rameterised mathematical formula, and is known a priori, but that its parameter
is unknown.

Our goal is to simultaneously determine these deformation, translation, and
rotation parameters by comparing the target data to transform with its corre-
sponding data. The translation and rotation parameters are determined in a
minimization paradigm described in the previous section. If we fix these pa-
rameters, the determination of deformation parameter becomes a shape match-
ing problem at an iterative minimization step. Thus, we can handle both pa-
rameter determination in a unified minimization framework.

We extend the parameter estimation of the registration formulation to add
the shape parameter by extending the error function in Equation (8.3). There-
fore, zij(p) in Equation (8.3) is transformed into:

zij(p) =
∑
i,j

||R(q)g(xi, k) + t− yji||2, (8.8)

where p = (t, q,k),
g(xi,k) : deformation function of point xi

with respect to parameter k.

And the gradient described in Equation 8.7 is extended as:

∂zij(p)

∂p
= 2(R(q)g(xi,k) + t− yji)

∂(R(q)g(xi,k) + t− yji)

∂p

∣∣∣∣
qI

(8.9)

=

⎡
⎢⎣ 2(g(xi, k) + t− yji)

−4g(xi, k)× (t− yji)
2(g(xi, k) + t− yji)

∂(g(xi,k))
∂k

⎤
⎥⎦ (8.10)
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This straightforward extension causes the unstable convergence of the de-
formation registration. The obtained translation, rotation, and deformation
parameters overreach the optimum if every parameter is applied simultane-
ously to the deformation, though each parameter can be estimated with enough
accuracy if applied independently. Namely, every parameter interferes each
other.

In order to prevent this interference, we design our extended formulation
again to remove the translation and rotation effect caused only by deformation.
The basic idea is to recover the position and posture which changes due to the
deformation. This is implemented by the “preliminary” rigid-body transforma-
tion which determines only the deformation parameter. First, Every parameter
is acquired by Equation 8.6 and 8.10. Then the preliminary rigid-body trans-
formation is determined only by the deformation parameter as follows:

g′(xi, k) = Rog(xi, k) + to, (8.11)

where
(Ro, to) = (R(qo), to),

such that

(qo, to) = arg min
q,t

∑
i

||R(q)g(xi, k) + t − xi||2. (8.12)

Ro, to can be derived from the following equation:

∂
∑
i ε

2
i

∂to
=

∑
i

2εi · ∂εi
∂to

= 0, (8.13)

where
εi = g(xi, k) + to − xi

This is a conventional registration problem, but it is unnecessary to strictly
solve the above equation. In fact, Ro doesn’t affect the stable convergence
so much as to. If Ro is ignored, to in Equation 8.13 is concretely derived as
follows: ∑

i

(g(xi, k) + t− xi) = 0

...to = −
∑
i(g(xi, k)− xi)

N
. (8.14)

Finally, Equation 8.8 is replaced with:

zij(p) =
∑
i,j

||R(q){Rog(xi, k) + to}+ t − yji||2. (8.15)
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In the ICP based registration algorithm, the acquisition of the good initial
parameter is significant for the optimal registration result. In our implemen-
tation, the initial transformation parameter is set manually by GUI with accu-
racy enough to reach the optimum. we investigate the registration behavior
according to the difference of the optimum and the initial parameter in each
experiment after this section.

5. Unknown Parameter Estimation of Mathematical
Model

We have examined manufacturing accuracy of mathematical models made
of plaster (Figure 8.2-(1)). This model is a kind of cultural asset, and was
manufactured in Germany at the end of the 19th century for educational pur-
poses and has been exhibited in our university museum. This model visually
represents the following mathematical formula:

X(u, v) = (lφ(v) cosu, lφ(v) sinu, lψ(v)), (8.16)

where 0 ≤ u ≤ 2π,
−a · sinh−1 (

a
b

) ≤ v ≤ a · sinh−1 (
a
b

)
,

φ(v) = b cosh
(v
a

)
,

ψ(v) =
∫ v
0

√
1− b2

a2 sinh−1 (
t
a

)
dt.

This surface is generated by rotating a 2D catenary (Figure 8.2-(2)) according
to the concerning documentation. The surface by revolution always has the az-
imuthal symmetry. Besides scale parameter (l), 2 parameters (a, b) are involved
in the deformation of the revolutional surfaces. Our motivation here, because
there are no documentation to identify the three deformation parameters when
manufacturing the model, was to estimate the deformation parameter by ap-
plying our proposed framework to its range image and the data computed from
Equation 8.16, to evaluate the manufacturing accuracy of the plaster model un-
der the estimated parameter, and to remake the accurate model since historians
and mathematicians are interested in the manufacturer’s skill in those days.

We have to estimate these parameters in order to compare the range image
of the model and the computed data from Equation 8.16 under the estimated
parameters. In this case, our proposed method can be applied by replacing the
deformation function like this:

g(xi, k) = (lφ(vi) cosui, lφ(vi) sinui, lψ(vi)),
where k = (l, a, b).
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Figure 8.2. Mathematical model used in our experiment.

The descent gradient is in the following:

∂zij(p)
∂p

=

⎡
⎢⎣ 2(g(xi, k) + t − yji)

−4g(xi, k)× (t− yji)
2(g(xi, k) + t− yji)

∂g(xi,k)
∂k

⎤
⎥⎦ , (8.17)

where

∂(g(xi, k))
∂v

=

⎡
⎢⎢⎢⎣

(
(l cos u)∂φ∂a , (l sinu)

∂φ
∂a , l

∂ψ
∂a

)T
(
(l cos u)∂φ∂b , (l sinu)

∂φ
∂b , l

∂ψ
∂b

)T
(φ(vi) cosui, φ(vi) sinui, ψ(vi))T

⎤
⎥⎥⎥⎦ . (8.18)

Such that

∂φ

∂a
= −bv

a2
sinh

v

a
,

∂ψ

∂a
=

vb2

2a3

(
− 1

2a2
sinh−1 v

a
+

1√
v2 + a2

)
,

∂φ

∂b
= cosh

v

a
,

∂ψ

∂b
= − b

a2
sinh−1 v

a
.

5.1 Experiment

The 3D shape of the model was captured by the MINOLTA VIVID 900.
The data was initially aligned by the manual process via GUI. The initial shape
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(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 8.3. The registration process of the parametric data. (1)-(8) shows the convergence of
both the measured and computed data.

parameters were also manually estimated. Figure 8.3 shows the registration
process. It indicates that the computed data is transformed to fit the actual one.
Estimated parameters are: a = 0.0568, b = 0.0237, l = 0.996.

5.2 Evaluation

The estimation is affected by various kinds of errors: measurement error;
initial registration error; and error in initial parameters. So we investigated
how the accuracy of estimated parameters depend on such errors by using
the synthesized data which was computed under the known parameters with
Gaussian noise added to form the noisy data. The accuracy of the estimation
could be evaluated as the difference between the known parameters (ground
truth) and the obtained parameters. The deformation parameters were set as
a = 0.05, b = 0.02 and l = 1.00.

The first error to consider in the estimation is the measurement error of the
range sensor. We first investigate how much noise is caused according to the
pose of the actual object by using the measured data of the white Lambertian
plane at the different poses. The system is shown in Figure 8.4. The white

board was set on the turntable. The pose was changed by rotating and trans-
lating the turntable. We denote l and θ as the distance from the white board to
the laser range finder and the angle between the normal of white board and the
ray of the laser, respectively. Five data were obtained at each pose. Principal
component analysis (PCA) was applied to estimate the most plausible plane
composed by the point cloud and to obtain the standard deviation of the mea-
surement error of the plane data. The standard deviation change of the plane
data are shown in Figure 8.5.

We investigated the influence of the measurement noise by using the com-
puted data from Equation 8.16 and its synthesized data. Noise with different
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standard deviation was added to its computed data. Standard deviation was set
at 0.01, 0.1, 1.0, 10.0 in this experiment. Ten synthesized data were created for
each standard deviation as the synthesized data. The initial translation, rotation
and deformation parameter of the synthesized data were the same as the one of
the computed data. The red line in Figure 8.6 show the range of the maximum
and minimum of estimated parameter, a, b and l, respectively, the blue line
shows the average of each estimated parameters, and the green dotted line is
the ground truth.

Effects of the noise standard deviation to the estimated parameters were sim-
ilar in all parameters: the larger the standard deviation was, the more different
from the ground truth the estimate was and the larger the range of the maxi-
mum and minimum parameters was. However, noise added in this experiment
was far higher than the observed noise. Even though noise with the standard
deviation of 0.01 was added, the difference from the ground truth was almost
none, and parameters were stably estimated. The maximum standard deviation
of the measurement noise in MINOLTA VIVID 900 was detected at less than
0.002, so the result indicated the robustness of our estimation method against
the sensor noise.

Next error is the initial registration error of translation and rotation. In the
same manner, we added the noise to the computed data to create its synthesized
data. The standard deviation of the noise (σ) was set to 0.0004 according to
the measurement error as observed above. Each initial parameter was set to
the same one of the computed data. The coordinate of the model is shown in
Figure8.2-(3).

Effects of translation and rotation were investigated separately. For the ini-
tial translation, synthesized data were translated 0.01, 0.02 and 0.03 [m] along
x or z axis, respectively. For the initial rotation, three synthesized data were
rotated 10, 20 and 30 [degrees] around x axis. Since revolutional surface of
catenary has the x, y and z symmetry,these translation and rotation were suffi-
cient for the evaluation.

The results of estimation were shown in Figure 8.7. In the figure, the left,
middle and right graphs show the estimation result in the case where the syn-
thesized data is translated along x, z axis and rotated around x axis, respec-
tively, as the difference between the ground truth and the estimated parame-
ters. When the initial translation/rotation amount is set as shown in the transla-
tion/rotation axis (e.g. 0.01 x-t, 0.02 x-t, 0.03 x-t in the left graph), the differ-
ence between each estimated parameter in the parameter axis (a, b, scale) and
its ground truth is shown in vertical axis (e.g. 0.00, ± 0.02, ± 0.04 in the left
graph).

Z axis for this surface is the direction of expanding/contracting. The trans-
lation along z axis results in the ambiguity of the parameter estimation. In
contrast, the translation along x axis is not directly related to the expansion
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Figure 8.4. System to evaluate measurement error. In this system, the surface normal and the
distance from the white board to the laser range sensor are changeable.

and contraction. The translation along z axis simultaneously affects the trans-
lation/rotation and deformation parameters. In fact, more iteration was needed
for good estimation in the case of translation along z axis than in the case of
translation along and rotation around x axis.

Final error is the result of the initial deformation parameter. The synthe-
sized data were made in the same manner, and the standard deviation of the
noise (σ) was set to 0.0004. The initial pose and position of the synthesized
data were set to the same one of the computed data. Effects of each initial de-
formation parameter was investigated, and each initial parameter was changed
incrementally from the ground truth.

The results of estimation were shown in Figure 8.8. In the figure, the left,
middle and right graphs show the estimation results in the case where the a, b
and l are set to each value shown in the horizontal axis of the graph, respec-
tively, as the difference between the ground truth and the estimated parameters.
When the initial deformation parameter is set as shown in the registration axis
(e.g. 0.07, 0.06, 0.04, 0.03 in the left graph), the difference between each es-
timated parameter in the parameter axis (a, b, scale) and its ground truth is
shown in the vertical axis (e.g. 0.000, ±0.005, ..., in the left graph). Figure
8.8 indicated that the effect of incorrect initial value on each parameter was
different. It is difficult to recognize the accuracy of our algorithm via the nu-
merical result, but the registration result is visually almost the same as shown
in Figure 8.3.

6. Inter-and-Intra Scanning Registration

In order to measure the large-scale objects effectively, we have developed
a novel 3D measurement system: the Flying Laser Range Sensor (FLRS).
FLRS digitizes objects from the air while being suspended beneath a balloon
platform.
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Figure 8.5. The relationship between surface normal and standard deviation. Each curve
showed the data at different distance from white board to the finder.
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Figure 8.6. The maximum and the minimum of estimated parameter.

Concerning areal measurement systems, some techniques have been pro-
posed so far. For example, aerial 3D measurements are achieved with a laser
range sensor installed on a helicopter platform [17, 18]. High frequency vi-
bration of the platform, however, must be considered to obtain highly accurate
results. Another technique is aerial stereo photography with a digital camera
that is attached to a balloon [19]; however, this stereo method cannot achieve
a satisfactory level of precision in the restored data.
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Figure 8.7. Estimation result in each case of initial translation and rotation error.
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Figure 8.8. Estimation result in each case of an initially set deformation parameter.

To overcome these difficulties, we have designed FLRS. It is free from high
frequency vibration such as that of a helicopter engine; there still remains low
frequency movement due to the floating balloon, causing distortion in obtained
data. This movement is generated by

Initial velocity

Initial angular velocity

Acceleration generated by external force

Angular acceleration generated by external moment

We can ignore the influence of translation and angular acceleration because for
scanning, FLRS needs only one second per frame. And insignificant rotation
can be approximated to translation movement. Hence we consider only con-
stant velocity movement. Under this assumption, we set up the deformation
equation in Equation 8.8.

In this case, the geometrical function g(x i, k) is represented only by con-
stant velocity vector v of FLRS movement, and Equation 8.8 is replaced with:

g(xi, v) = xi − τiv, (8.19)
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where τi is the time from the start of the scanning until the capture of the ith
point. The descent gradient is represented in this case as follows.

∂zij(p)
∂p

=

⎡
⎢⎣ 2(g(xi, v) + t− yji)

−4g(xi, v)× (t− yji)
2(g(xi, v) + t− yji)

∂g(xi,v)
∂v

⎤
⎥⎦ , (8.20)

where p = (t, q, v),

∂g(xi,v)
∂v =

⎡
⎢⎣ (τi 0 0)T

(0 τi 0)T

(0 0 τi)T

⎤
⎥⎦ .

While translation and rotation registration is due to the sensor movement
among multiple views, the shape deformation registration is due to the sensor
movement during one scan. Thus, we refer to this registration as “inter-and-
intra scanning registration”.

6.1 Experiment

As an experiment on actual case, we executed our algorithm on the data
of the Bayon temple. In this experiment, we aligned the corresponding data
captured by FLRS and Cyrax 2500. The latter data was scanned from the
stable ground, namely without movement during scanning, and we assume that
it is sufficiently reliable. The result is shown in Figure 8.9. You can see that
our algorithm aligned and fitted the FLRS’s data well onto the Cyrax2500’s
data.

6.2 Evaluation

To evaluate the accuracy of the algorithm, we aligned the original and syn-
thesized data through our algorithm. The synthesized data translates, rotates,
and distorts the original data with known parameters. The optimal deforma-
tion registration parameter of two data is the known parameters. We investi-
gate how close the parameter obtained through our algorithm is to the known
parameter. The synthesized data are created from a range image by removing
points randomly to make them sparser and not have any of the same points
to be included in both data, in order to make more actual condition in the
registration of the images at the different sight. Similar to the conventional
registration, each initial parameter is set via GUI, and then our algorithm is
executed. We investigate the difference between the parameter obtained by our
algorithm and the known parameter according to the change of v in the condi-
tion shown in Figure 8.1. The deformation registration is executed five times
at each setting parameter of v in order to remove the outlier, and the difference
is calculated as the average. The result is shown in Figure 8.11.
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Figure 8.9. Range images before and after our registration process: The left image shows the
data under the initially set translation, rotation, and deformation parameters. A range image of
FLRS (yellow) is aligned and fitted onto the corresponding range image of Cyrax 2500 (purple)
simultaneously as shown in the right image. These range images are the partial shape of the
Bayon temple in Cambodia.

(a) (b)

Figure 8.10. Sample range images for evaluation experiments.

First, we pay attention to the stable acquisition limitation of the accurate
parameter in our algorithm. The difference is stably constant in each parameter
in the condition where the setting velocity is within 1.6[m/s], but is drastically
oscillated otherwise. This result concludes that our algorithm can obtain the
accurate deformation parameter for distortion correction as long as the sensor
velocity is within 1.6[m/s].
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Table 8.1. The setting difference between the original and the transformed in each parameter
for the accuracy evaluation of the deformation registration.

parameter setting difference
R(q) 3 [deg] around X axis

t 0.1 [m] along X axis

v
0.00-3.00 [m/s] along X axis
(every 0.01 [m/s] increment)
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Figure 8.11. The difference from the optimum (v, t,R)

Next, we also focus on the estimation accuracy of the obtained parameter
under the sensor velocity of 1.6[m/s]. The average differences of t, R, and v
are 0.005[m], 0.1[deg], and 0.008[m/s] respectively. Note that size of faces in
the images is over 1 meter.

7. Conclusion and Future Work

We proposed an extended registration framework which allows the 3D
data to be deformed. Our proposed method assumes that the deformation is
strictly defined by some parameterized formulation derived from the defor-
mation mechanism. The deformation registration reduces to the minimization
problem of the error function which is the squared sum of distance between the
corresponding point in the data. While the conventional registration minimiz-
ing this error function concerned 6 parameters (3 translation parameters and 3
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rotation parameters for rotation), the error function in our proposed framework
includes the deformation parameters as well.

We introduced two application in this chapter. One is the shape parameter
estimation, and the other is the shape rectification. In the first application, the
accurate shape parameters for the mathematical model could be estimated. The
other application rectified the distorted data obtained from the Flying Laser
Range Sensor (FLRS) which is suspended under a balloon platform. And
the estimation accuracy was also shown in each application. The deformation
parameter estimation is a method for 3D data fitting, and also a way to un-
derstand the cause and origination of the deformation, so can be used for the
system feedback.

Our applications are only a few of the possible applications, and we are try-
ing to develop an application to generate the CAD primitives under the shape
parameter estimated from the range image. This application will convert the
range images into the properly approximated CAD data. The benefit of this ap-
plication is the ability to compress the range images which usually consist of
numerous 3D points and polygons. We intend to apply our framework widely
to various class of problem in the future.
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Chapter 9

PARALLEL PROCESSING OF RANGE DATA
MERGING

Ryusuke Sagawa, Ko Nishino, Mark D. Wheeler, and Katsushi Ikeuchi

Abstract This chapter describes a volumetric view-merging algorithm that generates a
consensus surface of an object from its range images. Our original method
merges a set of range images into a volumetric implicit-surface representation,
which is converted to a surface mesh by using a variant of the marching-cubes
algorithm. We propose a method that increases the computation and memory

efficiency for computing signed distances and the method of parallel computing
on a PC cluster. Since our method permits a reduction in the data amount

allocated in memory, the closest point is searched efficiently; this allows us to
increase the number of parallel traversals and to reduce the computation time.

In this chapter, we describe the following two algorithms which are com-
plementary in terms of the efficiency of CPUs and memory usage: distributed
allocation of range data and parallel traversal of partial octrees. By adjusting
them according to the system specifications, we can build the model efficiently
by a PC cluster. We have implemented this system and evaluated its perfor-
mance.

1. Introduction

Integration of multiple range images is important to enable the use of 3D
data acquired from stereo systems, laser range finders, etc. It is also funda-
mental and essential for any algorithms which utilize the generated 3D models,
for example, tracking, object recognition and so on.

We have been developing techniques for automatically creating virtual real-
ity models through observation of real objects; we refer to these techniques as
modeling-from-reality (MFR). In order to explore unforeseen technical diffi-
culties and to further extend our MFR techniques by solving these difficulties,
we have begun a project to model Japanese cultural heritage objects through
the use of these MFR techniques[9].

Some Japanese cultural heritage objects are large and their shapes may be
intricate. Thus, the models of these objects’ shapes must contain huge amounts
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of data. In our previous experiments in modeling small, indoor objects, we did
not have to consider the computation and memory requirements to build those
models. However, building a model of a huge amount of data necessitates
our taking these requirements into account. In this chapter, we describe our
proposed method for modeling the shape of huge, possibly intricate, objects.

After scanning the shape of an object by using a range sensor and then align-
ing all range images into the same coordinate system, our original method[13]
converts a set of range images into a volumetric implicit-surface represen-
tation, It then obtains a surface mesh using a variant of the marching-cubes
algorithm[6]. Unlike previous techniques[5, 2, 4] based on implicit-surface
representations, our method estimates the signed distance to the object surface
by finding a consensus of locally coherent observations of the surface.

Several approaches which are not based on implicit-surface representation
have been proposed [11, 10, 12]. These algorithms perform poorly if the sur-
faces are slightly misaligned or if there is significant noise in the data.

There are some previous researches which implement the marching-cubes
algorithm in a parallel manner [1, 7]. To reduce the computation time for

merging range images, the signed distance should be also computed in a
parallel manner.

The most costly part of the computation of our method is finding the con-
sensus surface to compute the signed distance. To increase the computation
and memory efficiency, we propose a method which reduces the amount of
data to be searched, around which point the signed distance is computed.

We utilize octrees to represent volumetric implicit surfaces for effectively
reducing the computation and memory requirements of the volumetric repre-
sentation without sacrificing the accuracy of the resulting surface.

To further ease this size problem, we have developed parallel software that
runs on a PC cluster to handle the huge amount of data. The parallel software
consists of the following two components: 1. Distributed allocation of range
data. 2. Parallel traversal of partial octrees.

In the following sections, 2 describes our original merging algorithm. 3 ex-
plains the method for increasing the computation and memory efficiency. In 4,
the parallel merging algorithm is shown. Finally, the performance evaluation
is shown in 5.

2. Data Merging

2.1 Volumetric Modeling and Marching Cubes

Recently, the marching-cubes algorithm[6] has propelled volumetric mod-
eling beyond the confines of “blocky” occupancy grids. Instead of storing a
binary value in each voxel to indicate whether the voxel is empty or full, the
marching-cubes algorithm requires that the data in the volume grid are sam-
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Figure 9.1. Zero-crossing interpolation from the grid sampling of an implicit surface
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Figure 9.2. Marching Cubes: An implicit surface is approximated of by triangles. ◦: voxels
of outside surface. •: voxels of inside surface.

ples of an implicit surface. In each voxel, we store the signed distance, f(x),
from the center point of the voxel, x, to the closest point on the object’s surface.
The sign indicates whether the point is outside, f(x) > 0, or inside, f(x) < 0,
the object’s surface, while f(x) = 0 indicates that x lies on the surface of the
object(See Figure 9.1).

The marching-cubes algorithm constructs a surface mesh by “marching”
around the cubes while following the zero crossings of the implicit surface
f(x) = 0. The resulting surfaces are relatively smooth and their accuracy can
be greater than the resolution of the volume grid due to sub-voxel interpolation
(See Figure 9.2).

Now we focus on a more easily solved problem: How do we compute f(x)?
The real problem underlying our simple question is that we do not have a single
surface; instead, we have many surfaces. Some elements of those surfaces
do not belong to the object of interest but rather are artifacts of the image
acquisition process or background surfaces. In the next subsection, we present
an algorithm that answers the question and does so reliably in spite of the
presence of noisy and extraneous surfaces in our data.
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Figure 9.3. Naive algorithm: An example of inferring the incorrect sign of a voxel’s value,
f(x), due to a single noisy triangle.

2.2 Consensus Surface Algorithm

This section describes the method for computing the signed distance func-
tion f(x) for arbitrary points x when given N triangulated surface patches
from various views of the object surface. We call our algorithm the consensus-
surface algorithm.

We can break down the computation of f(x) into two steps:

Compute the magnitude: compute the distance, |f(x)|, to the nearest
object surface from x

Compute the sign: determine whether the point is inside or outside of
the object

The previous naive algorithm finds the nearest triangle from all views and
uses the distance to that triangle as the magnitude |f(x)|. If the normal of the
closest surface point is directed toward x, then x must be outside the object
surface. In Figure 9.3, the point chosen as the closest point from x does not
belong to the real surface. Thus, based on the normal information from the
closest point, the algorithm incorrectly considers that x is inside the surface.

Our solution to these problems is to estimate the surface locally by averaging
the observations of the same surface. The trick is to specify a method for
identifying and collecting all observations of the same surface.

Nearby observations are compared using their location and surface normal.
If the location and normal are within a predefined error tolerance (determined
empirically), we can consider them to be observations of the same surface.
Given a point on one of the observed triangle surfaces, we can search that
region of 3D space for other nearby observations from other views which are
potentially observations of the same surface. These searches are efficiently
implemented using k-d trees[3].
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Figure 9.4. Consensus surface algorithm: The signed distance is chosen from circled consen-
sus surfaces.

The consensus-surface algorithm examines the closest point in each im-
age’s triangle set. If there are sufficient surfaces of other triangle sets which
are regarded as the same surfaces of each closest point, the closest point is a
consensus surface. The algorithm which determines whether two surface ob-
servations are sufficiently close in terms of location and normal direction is as
follows:

SameSurface(〈p0, n0〉, 〈p1, n1〉) ={
True (‖ p0 − p1 ‖≤ δd) ∧ (n0 · n1 ≥ cos θn)
False otherwise

(9.1)

where δd is the maximum allowed distance and θn is the maximum allowed
difference in normal directions.

For example, consensus surfaces are circled in Figure 9.4. The algorithm
chooses the closest one of them as the signed distance. In this case, it is cor-
rectly determined that x is the outside surface and x ′ is the inside surface.

2.3 Adaptive Resolution by Octree Representation

Volumetric modeling involves a tradeoff between accuracy and efficiency.
The octree representation[8] balances this problem while keeping the algo-
rithm implementation simple. Instead of iterating over all elements of the voxel
grid, we can apply a recursive algorithm on an octree that samples the volume
more finely only when near the surface of the object (See Figure 9.5).

To interpolate the zero crossings properly, we will need the implicit dis-
tance for the voxel containing the surface (the zero crossing) and all voxels
neighboring this voxel; these voxels must all be represented at the finest level
of precision. This constraint means that, if we have a surface at one corner of
an octant, the longest possible distance to the center of a neighboring octant is
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surface

2D slice
of octree

Figure 9.5. The adaptive resolution is high around the surface and low elsewhere

one and one-half diagonals of the voxel cube, which is a distance of 3
√

3
2 cube

units.
Given the current octant, we can compute the signed distance. If the magni-

tude of the signed distance, |f(x)|, is larger than 3
√

3
2 of the octant width, then

it is not possible for the surface to lie in the current or neighboring octant. If
the surface is not in the current or neighboring octant, we do not care to further
subdivide the current octant.

3. Increase the computation and memory efficiency

If the size of mesh data to be merged is huge, it is difficult to allocate all of
that data to memory, Also, the computation time of the signed distance cannot
be ignored. We propose the following method to increase the computation and
memory efficiency by reducing the data allocated in the memory.

When the algorithm traverses a part of the octree, the data searched for
finding the closest surface is only the local area around the voxel. The data of
the other area are never used for computing signed distances while traversing
the sub-octree. Moreover, a closest surface is effectively searched using a k-d
tree. However, it is inefficient when the k-d tree contains unnecessary data.

As described in Section 2.3, a octant is subdivided when its signed distance
is less than 3

√
3

2 cube units. Thus, the data farther than 3
√

3
2 cube units is not

necessary for finding the closest point of the voxel.
To load the necessary data into memory, we must read all of the data files.

Since the overhead of reading files for the every finest octant is too costly, we
read the data files for an ancestor octant. Where the width of an ancestor octant
is W0 and the width of the finest octant is W , the area of the mesh data to be
loaded is inside the rectangle of a dotted line in Figure 9.6.
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Figure 9.6. Load only the mesh data within the dotted rectangle into memory

4. Parallel Computing of Signed Distances

In this section, we describe the algorithm for parallel computing of signed
distances. There are two motivations for parallel computing signed distances.
We now propose the parallel computing method for each motivation:

1 Handling range data of huge size: We distribute the allocation of range
data to multiple PCs.

2 Fast merging: We divide the octree into sub-octrees and assign traver-
sal of a sub-octree to each CPU.

4.1 Distributed Allocation of Range Data

Calculating a signed distance from a point requires consideration of all
range data with respect to this point. When the number of the measurement
increases, more data should be considered. It becomes difficult to allocate all
the range data in a single processor.

We distribute that range data to multiple PCs and compute signed distances
in a parallel manner. For example, in Figure 9.7, Data 1,2,3 are allocated to
PCs 1,2,3, respectively. Signed distances from the point, x, to Data 1 are com-
puted by PC1. In the same manner, signed distances to Data 2 are computed by
PC2, and so on. Since finding the closest point of a mesh data is independent
of the others, we can compute signed distances in a parallel manner.

However, the computation times are different among CPUs; After finding
the closest points of all data, we have to choose the smallest magnitude of the
signed distances. To synchronize, until the remaining CPUs finish computing
the signed distances.
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Figure 9.7. Parallel computation of signed-distances
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Figure 9.8. Assignment of partial space of the octree to each CPU and parallel traversal of
partial trees

4.2 Parallel Traversal of an Octree

Dividing an octree into partial trees enables us to traverse the partial trees.
We assign the partial space of an octree to each CPU and traverse partial trees
in a parallel manner (See Figure 9.8). Since the traversals of partial trees

are independent of one another, a traversal does not have to synchronize with
others, and the computation time can be reduced according to the number of
CPUs.

By the method described in 3, the area of range data which each process
owns is only inside the voxel and its peripheral area. Thus, each process owns
only the range data of the local area which it takes charge of in a traversal of a
partial octree.

However, each machine must cache range data files in memory to read
them efficiently and repeatedly. Since a PC cluster cannot share data as a
shared-memory machine can, range data files have to be allocated redundantly;
therefore, memory efficiency dwindles as this parallel traversal method is used.
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Figure 9.9. Merging result of Kamakura Great Buddha

Table 9.1. Results of different parameters of the number of traversals and machines of each
traversal.

Number of Number of machines Average required Computation
traversals in each traversal memory of each machine Time

A 1 1 200MB 468 min.
B 4 1 200MB 117 min.
C 1 4 50MB 215 min.
D 8 1 200MB 58 min.
E 1 8 20MB 256 min.
F 8 2 200MB 44 min.
G 16 1 250MB 23 min.

4.3 Combination of Parallel Methods

The above two methods are complementary in terms of the efficiency of
CPUs and memory usage. In practice, they should be adjusted according to
the system specification by combining those two methods with an appropriate
condition. Two methods can be combined by allocating range data distributed
in each parallel traversal.

The maximum number of traversals is determined by the system memory
size. Thus, the combination strategy maximizes the number of traversals to
deal with the memory. If the system has more CPUs than the parallel traversals,
each traversal uses multiple CPUs by the method of distributed allocation.

5. Performance Evaluation

We have implemented these algorithms, and constructed one integrated dig-
ital Great Buddha of Kamakura. For this project, we have built a PC cluster
that consists of eight PCs of dual PentiumIII 800MHz processors with 1GB
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memory for each PC. The machines are connected by 100BASE-TX Ethernet.
Figure 9.9 shows the obtained geometric model of the Great Buddha; the
model contains 3 million points and 5.5 million triangles.

We tested the merging program by changing parameters of the number of
traversals and machines of each traversal. Raw data consists of 12 files; of
those files, the average contains about 300 thousand points and 600 thousand
triangles. The total size is about 150M bytes. The result is shown in Table 9.1.

Without reducing the data allocated in the memory, the maximum number
of the traversals is four because of the system memory size. It takes 59 hours
to build the model where it is computed by 4 traversals that are allocated and
distributed to 4 PCs. It has been proven that the method of reducing the data
allocated in the memory increases the computation and memory efficiency.
After reducing data, we can compute the signed distances by a single machine;
the computation time is 468 minutes.

The algorithm without parallel processing is equal to computing by one
traversal using a machine (row A). If the system computes signed distances
with the distributed allocation of memory (row C,E,F), the required memory
for each machine is less than row A. The reciprocal of required memory of each
machine is proportional to the number of machines in each traversal (See Fig-
ure 9.11). Next, if the system computes with parallel traversals (row B,D,F,G),
the computation time is less than row A. The reciprocal of computation time is
almost proportional to the number of parallel traversals(See Figure 9.10).

When the memory allocation is distributed to a small number of machines,
it computes faster as the number increases. In this case, row C computes faster
than row A, also row F faster than row D. However, when the memory allo-
cation is distributed to a large number of machines, the computation becomes
slower because of waiting synchronization. In this case, row E is slower than
row C.

According to the combination strategy, the signed distances are computed
by 16 parallel traversals that are allocated to each PC to minimize the computa-
tion time for our PC cluster. Now we consider the combination of systems of
different memory size for computing signed distances of the Kamakura Bud-
dha model: First, if the memory of each PC is less than 200MB, the number of
distributed allocation must be larger than 2 machines, like row C and E. When
each traversals is distributed to 4 machines, the number of traversals is deter-
mined to be 4 to minimize the computation time. Next, if the memory of each
PC is 200-256MB, each traversal should be distributed to 2 machines. Then,
the number of traversals is determined to be 2.
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Figure 9.10. The reciprocal of computation time is proportional to the number of parallel
traversals.

6. Conclusion

In this chapter, we have proposed a method which increases the computation
and memory efficiency of computing signed distances, along with a method
for parallel computing using a PC cluster. First, since we reduce the data
allocated in the memory, the closest point is searched efficiently. Thus, we can
increase the number of the parallel traversals and reduce the computation time.

In addition, we have described two algorithms which are complementary
in terms of the efficiency of CPUs and memory usage. By adjusting them
according to the system specifications, we can build the model efficiently by
using a PC cluster.

Now we can build models of huge size. In the future, we plan to scan more
Japanese cultural heritage objects and build fine models with photometric at-
tributes.
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Chapter 10

ADAPTIVELY MERGING LARGE-SCALE RANGE
DATA WITH REFLECTANCE PROPERTIES

Ryusuke Sagawa, Ko Nishino, and Katsushi Ikeuchi

Abstract In this chapter, we tackle the problem of geometric and photometric modeling of
large intricately-shaped objects. Typical target objects we consider are cultural
heritage objects. When constructing models of such objects, we are faced with
several important issues that have not been addressed in the past – issues that
mainly arise due to the large amount of data that has to be handled. We propose
two novel approaches to efficiently handle such large amounts of data: a highly
adaptive algorithm for merging range images and an adaptive nearest neighbor
search to be used with the algorithm. We construct an integrated mesh model
of the target object in adaptive resolution, taking into account the geometric

and/or photometric attributes associated with the range images. We use sur-
face curvature for the geometric attributes and (laser) reflectance values for the
photometric attributes. This adaptive merging framework leads to a significant
reduction in the necessary amount of computational resources. Furthermore, the
resulting adaptive mesh models can be of great use for applications such as
texture mapping, as we will briefly demonstrate. Additionally, we propose an
additional test for the k-d tree nearest neighbor search algorithm. Our approach
successfully omits back-tracking, which is controlled adaptively depending on
the distance to the nearest neighbor. Since the main consumption of computa-
tional cost lies in the nearest neighbor search, the proposed algorithm leads to a
significant speed-up of the whole merging process. In this chapter, we present
the theories and algorithms of our approaches with pseudo code and apply them
to several real objects, including large-scale cultural assets.

1. Introduction

Modeling the shape and appearance of objects in the real world are impor-
tant issues in computer vision. Cultural heritage objects are one of the worthi-
est candidates for modeling of their shape and appearance. There are several
advantages to modeling these objects, for example, presentation, preservation,
and restoration. Many cultural assets are large in scale and, at the same time,
their shapes consist of delicate and intricately-curved surfaces. In this study,
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our target objects were mainly intricately-shaped objects, such as statues of
the Great Buddha and ancient temple buildings. High resolution and high pre-
cision are required for modeling these objects, just as when modeling small
objects.

To acquire the 3D coordinates of the surface points of objects, we use range
sensing systems. As most range sensing systems, e.g., stereo, structured light,
and laser range finders return range images obtained from particular view-
ing points, each output range image covers only a small portion of the target
object surface. To ensure that the entire surface of the target is captured, mul-
tiple range images of the same object have to be acquired while changing the
viewpoint. Thus, the main issue of modeling real objects is creating the entire
model of an object from multiple range images. The “integration” of multiple
observations into a unified model is the main issue tackled in this chapter.

1.1 Previous Work

1.1.1 Geometric Modeling

So far, due to the recent development of range finders, several researchers [1–
5] have studied the modeling of cultural heritage objects using such powerful
sensors. Fig. 10.1 shows the modeling steps using a range finder. The 3D
modeling of the shape of the object is accomplished by performing the follow-
ing three steps:

1 Acquiring the range images (scanning).

2 Aligning of those acquired range images from different viewpoints (align-
ing).

3 Reconstructing the unified 3D mesh model (merging).

In the first step, a target object is observed from various viewpoints. If it is
a small object, it is mounted on a turntable or a robot arm.

In the second step, multiple range images are aligned into a common co-
ordinate system. If an object is mounted on a turntable or a robot arm, the
aligning step is accomplished by recording each local coordinate system a pri-
ori. Otherwise, range images are aligned by using registration algorithms
which establish point correspondences and minimize the total distance between
those points, e.g., feature-based methods [6, 7], ICP-based methods [8, 9], etc.
Besl and McKay [8] proposed a point-based matching method, while Chen’s
method [10] is based on the distance evaluation between the point and the poly-
gons. Wheeler and Ikeuchi [11] introduced M-estimator to the ICP scheme for
discarding outliers as wrong correspondences. Neugebauer [12] proposed the
idea of ’simultaneous registration’ that aligns range images simultaneously to
avoid the error accumulation of the pairwise alignment methods. Several other
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Figure 10.1. Steps of geometric and photometric modeling of a small object.

variants of simultaneous alignment have been developed [13–16]. Huber and
Hebert [17] proposed a method of automatic aligning range images without
any knowledge about initial positions of range images, while other methods
require a rough estimation of their positions.

For merging multiple pre-aligned range images, the third step of the pipeline
in Fig. 10.1, several approaches have been proposed. Turk and Levoy [18]
proposed a method to “zipper” two range images at a time, by first remov-
ing overlapping portions of the meshes, clipping one mesh against another,
and then re-triangulating the mesh on the boundary. Although integrating two
range images is an intuitive process, pairwise merging does not remove errors
well when merging multiple range images and is very sensitive to noise in the
range images. Soucy and Laurendeau [19] also proposed a merging algorithm
based on mesh representation, which is also sensitive to noise of mesh bound-
ary. Given a number of range images overlapping each other, a merging pro-
cedure which extracts the isosurface is suitable, e.g., a merging method that
makes use of volumetric, implicit-surface representation and then extracts the
mesh surface by using the marching-cubes algorithm [20] (We will abbreviate
that algorithm as MC throughout the rest of this chapter). Hoppe et al. [21]
constructed 3D surface models by applying MC to a discrete, implicit-surface
function generated from a set of range images. After inferring local surface

approximations from clouds of points based on tangent plane estimations, a lo-
cal search was accomplished to compute the signed distance from each voxel
to the surface of the point set. Curless and Levoy [22] enhanced Hoppe’s al-
gorithm in a few significant ways by developing a method to compute signed
distances from multiple range images. Their method efficiently traverses the
volume by resampling range images along scanlines of voxels; since it finds
corresponding points on the screen space by projecting both voxels and a range
image, and, in effect, updates only a narrow band of voxels on either side of the
zero level, it does not go through all voxels. However, none of these methods,
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including [23], compensate for outliers of point data; it is assumed that the data
is part of the object and the noise can be removed by averaging. Each of these
methods suffers from inaccuracy, e.g., integrating unrelated observations, and
these accuracy problems will affect the result even when the data is noise-free.
Whitaker [24] proposed a level-set approach for integrating range images; this
approach introduced a smoothness constraint using a Bayesian formulation for
averaging observations. This method removes outliers of range images by
smoothing. Level-set methods [24–26] use the narrow-band method to reduce
the computational cost, which updates the finite band of voxels on either side
of zero level. Wheeler et al. [27, 28] addressed these important problems by
designing a consensus surface algorithm. The consensus surface algorithm
attempts to justify the selection of observations used to produce the average
by finding a quorum or consensus of locally coherent observations. This pro-
cess successfully eliminates many troublesome effects of noise and extraneous
surface observations, and also provides desirable results with noise-free data.
We developed a new method based on this method to merge large amounts of
data. The methods proposed in [27, 29] use an octree as the data structure
to reduce the computational cost of converting range images to a volumetric
representation.

In our merging algorithm, we search the nearest neighbor points of range
images. The nearest neighbor problem in multidimensional space itself is
a major issue in many applications. Many methods have been developed to
search for the nearest neighbor of a query. A simple exhaustive search com-
putes the distance from a query to every point. Its computational cost is O(n).
This approach is clearly inefficient. Hashing and indexing [30, 31] finish a
search in constant time; however, they require a large space in which to store
the index table. For accessing multidimensional data, some hierarchical struc-
tures have been proposed, e.g., k-d tree [32], quadtree [33], R-tree [34], and
octree spline [35]. These trees differ in structure, but their search algorithms
are similar. The k-d tree [32] is one of the most widely used structures for
searching nearest neighbors. It is a variant of binary tree that partitions space
using hyperplanes that are perpendicular to the coordinate axes. If a k-d tree
consists of n records, the k-d tree requiresO(n log2 n) operations to construct
andO(log2 n) to search. Zhang [36] proposed a method which prunes travers-
ing branches of a k-d tree when their records are farther than a threshold. This
method does not find any candidate if the nearest neighbor is farther than the
threshold. Greenspan and Yurick [37] proposed an Ak-d tree for searching the
nearest neighbor points approximately to speed up aligning range images by
omitting back-tracking. It does not guarantee to find the correct nearest neigh-
bor. This method is similar to our idea [38]. However, the nearest neighbor
may not be accurate if it is farther than the bin size. In this chapter, we intro-
duce a new thresholding method to the k-d tree search. This method efficiently
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reduces the search cost of merging large data sets of range images. The dif-
ference between ours and Zhang’s method is that our method always finds a
candidate of the nearest neighbor, since we need a rough estimation even if it
is far from a query for hole filling [39].

1.1.2 Photometric Modeling

Modeling appearance is known as photometric modeling and typically in-
volves registration of color images with a geometric model so that the im-
ages can be texture mapped onto the geometric model (Fig. 10.1). Several
methods of aligning color images with range images [27, 40–42] have been
proposed. Neugebauer and Klein [42] proposed simultaneous registration of
multiple texture images. Wheeler [27] uses occluding edges extracted from the
3D model for aligning with a 2D color image. If a range image is obtained
by a laser range finder, laser reflectance strength (LRS) image can be ob-
tained. Reflectance edges are more robust than occluding edges for the change
of viewpoint. Kurazume et al. [40] thus extended a technique for aligning a
2D color image and a range image of an object by comparing the edges of the
color image and the edges of LRS values attached to the range image. To
align a color image with a merged mesh model by this method, we propose a
new method to merge range images with LRS values.

1.2 Overview of This chapter

In order to model large-scale and intricately-shaped objects, we propose the
following techniques in this chapter:

1 Adaptive merging of range images according to geometric characteris-
tics

2 Adaptive merging of photometric attributes of range images

3 Adaptive searching of the nearest neighbor points in a huge amount of
range images

We first describe our merging algorithm, which is based on Wheeler’s method
[28] in Section 2. Then, we propose two approaches to handle a huge amount
of range images in merging range images. Section 3 describes a new method
to merge range images in adaptive resolution. Then, we propose a new
method to merge LRS values of range images in our merging framework in
Section 4. Section 5 explains an adaptive neighbor search in finding the closest
point of a range image.
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Figure 10.2. An example of implicit surface function computed from an explicit surface.

2. Consensus Surface Algorithm

2.1 Signed Distance Field

Using all range images, this method first constructs a volumetric represen-
tation, which is called a signed distance field (SDF). Those range images are
assumed to be already aligned into a common coordinate frame. In this volu-
metric representation, 3D space is partitioned into three dimensional voxels. A
voxel has a signed distance f(x) from its center x to the nearest surface. The
sign of f(x) is positive if the center x is outside the object; it is negative if the
center x is inside the object. Because the surface of the object is represented
implicitly by f(x) = 0, f(x) is called the implicit surface function. Fig. 10.2
shows a 2D slice view of an example of SDF, which is composed of 9 vox-
els. If the surface is converted to SDF, the f(x) of each voxel is computed
as shown. The voxels inside the object are dark gray, and the ones outside the
object are white.

2.2 Marching-Cubes Algorithm

Though a volumetric representation such as SDF can be visualized by vol-
ume rendering [43], a mesh model is suitable for our goal, which is geometric
modeling and the analysis of objects. Lorensen and Cline [20] proposed the
marching-cubes algorithm, which converts the volumetric representation to a
mesh model. MC constructs a surface mesh by “marching” around the cubes
which contain the zero level of the implicit surface f(x) = 0. MC generates
surface triangles to intersect voxels which have positive signed distances and
voxels which have negative signed distances. Since the original algorithm has
ambiguity in the algorithm of generating triangles, Nielson and Hamann [44]
proposed a method to resolve ambiguous cases.
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2.3 Taking a Consensus of Range Images

To compute signed distances from multiple range images, our approach is
based on the consensus surface algorithm proposed by Wheeler et al. [28].
It computes the implicit surface function f(x) of each voxel using multiple
range images. Fig. 10.3 shows an example in which there are three range
images which are intersecting between two neighboring voxels. The centers
of the two voxels are x and x ′. After this, the definition of a range image
is a mesh model which consists of 3D vertices and triangles that connect the
neighboring vertices. If there is a large discontinuity between vertices, we do
not connect them in the same manner with [18, 23]. The normal vectors of
the range images in Fig. 10.3 are facing outwards of the object. The normal
vector of each vertex is computed by averaging the normal vectors of triangles
which share the vertex.

To compute the signed distance value f(x), the algorithm finds the nearest
point to the center of the voxel in each range image. Since the nearest point is
not always on a vertex of the triangles, the algorithm finds the nearest vertex of
a range image, and computes the nearest point in the triangles which include
the nearest vertex. We assume that true nearest point is in the neighborhood of
the vertex. Although it is a heuristic that can fail, it works well in practice. In
this example, there are three nearest pointsA,B and C.

If the positions of the nearest points are close and their normal vectors are
similar directions, we regard those points as having consensus. The consensus
surface algorithm computes a reliable point by taking an average of the points
which have consensus. If there are some reliable points, the algorithm chooses
the reliable nearest points from them. In this case, because C is isolated, the
method discardsC and takes an average ofA andB, and computes the magni-
tude of f(x) by the distance between x and the averaged point. Since the inner
product (x− p) · n > 0, where the averaged nearest point is p and its normal
vector is n, x is outside and the sign is determined as f(x) > 0. Similarly,
x′ is inside and f(x′) < 0. Because the algorithm discards outliers, it is not
simply averaging the distance together as [22].

Though the original algorithm [28] uses a weighting scheme for computing
consensus, we simply count the number of overlapping range images. If the
number is more than a consensus threshold, the overlapping range images are
valid and we take average of them. Otherwise, they are discarded from aver-
aging. The consensus threshold depends on the accuracy of the range finder.
In our experiment, the value is 2; thus, we can discard outliers if three range
images are acquired at a point and one of them is an outlier as Fig. 10.3. On
this assumption, we do not have to handle the boundary of range images in a
special manner.
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Figure 10.3. Consensus surface algorithm: The signed distance is chosen from the consensus
surfaces inside the gray circle.

2.4 Subdividing Voxels Based on Octree

To determine where the implicit surface is, we have to compute the signed
distances of all voxels around the zero level of the implicit function. It is costly
to compute the signed distances of all voxels, since the computational cost is
O(n3) if the volume of interest is uniformly divided into n × n × n voxels
along each axis.

Wheeler [28] proposed the strategy of computing signed distances by sub-
dividing the volume of interest recursively in an octree manner. It starts with
the entire volume being a single voxel for computing the signed distance; it
subdivides the voxel if the signed distance satisfies the following inequality,

|f(x)| < 3
√

3
2
w, (10.1)

where w is the width of the voxel of interest. If Eq. (10.1) is satisfied, the
implicit surface can exist inside the voxel or the neighbor voxels. It stops
subdividing if the voxel becomes the user-defined finest resolution. Since the
width of voxels that contain the implicit surface is the same, MC [20] is ap-
plied to the voxels of the same size which are subdivided in an octree manner.
Subdividing voxels in an octree manner practically reduces the computational
cost toO(n2), because the finest resolution voxels exist only near the surface.

3. Adaptive Merging Algorithm

Wheeler’s algorithm produces a mesh model of the finest resolution every-
where; however, the dense sampling is not necessary where the shape of the
object is nearly planar. Thus, we propose an algorithm to construct the 3D
model in an efficient representation. By taking the surface curvature into ac-
count when splitting the voxels recursively in an octree manner, the resulting
3D surface will be subdivided more in high curvature areas and less in sur-
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face areas that are nearly planar. Therefore, the resulting geometric model will
require fewer triangular patches to represent the object surface.

This is similar to research on mesh model simplification algorithms based
on surfaces [45–47]. On the other hand, we reconstruct a simplified 3D model
through a range image merging process based on implicit surface repre-
sentation. Our approach is more reasonable than generating a dense mesh
model of constant resolution and simplifying it. The adaptive mesh model
created by our method can be used for the input of simplification algorithms
for further mesh optimization. The simplification is done when splitting vox-
els recursively, enabling better preservation of the topology and mass of the
object compared with the results of other volume-based simplification meth-
ods [48, 49]. Frisken et al. [50] proposed adaptive sampling of the signed
distance field. They generate surface meshes based on the surface nets ap-
proach [51]. For converting the volumetric representation of the 3D model to a
triangle-based mesh model, we propose an extended version of the marching-
cube algorithm; this version handles voxels at different resolutions. However,
the aim of their paper is not merging range images. Thus, we propose a
method for adaptively merging range images.

3.1 Subdividing Voxels Based on the Geometric
Attributes of Range Images

We determine the sampling interval of the signed distance, depending on the
variation of geometric attributes to efficiently represent the final mesh model.
Depending on the change in surface curvature, the proposed method coarsely

samples in planar areas, consequently reducing the amount of data and com-
putation, while creating a finer model of an intricately-shaped object by effi-
ciently utilizing computation power.

Our method determines the variation of surface curvature by comparing sur-
face normals of range images. We compare the normal ni of each 3D point of
all range images inside the voxel in interest and the normal n̄ of the approx-
imated plane (see Fig. 10.4), which can be estimated by applying principal
component analysis (PCA) to all point data in the voxel. If the angle between
the data point normals ni and approximate normal n̄ satisfies

max
i

(arccos(ni · n̄)) < δn, (10.2)

where δn is the threshold of the angle, the sampling interval is fine enough, and
no further voxel splitting is required.

To avoid erroneous subdivisions of voxels by the influence of noise included
in each range image, our method takes a consensus between range images on
the decision of voxel subdivision. Now, N n is the number of range images
which satisfies Eq. (10.2), and Nall is that of consensus range images. Our
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Figure 10.4. Comparison of the normal vector of each vertex and the approximate normal n̄
by PCA

method does not subdivide the voxel if

Nn

Nall
> Tn, (10.3)

where Tn is the threshold of consensus for normal vectors.
If a range image is not smooth, the computation of normal vectors becomes

unstable, especially in the case that it contains zigzag noise, which has high
spatial frequency. It often occurs with a laser range finder when range images
are acquired under inappropriate conditions. In such a case, the algorithm

of computing consensus does not work well, and neither does the subdivision
based on geometric attributes, because their criteria are based on normal vec-
tors. Thus, we proposed another method for taking consensus of range images
[52], which does not depend on normal vectors. If range images contain zigzag
noise, we refine those range images by [52] before merging them. Since the
refined range images have reliable normal vectors, we can avoid erroneous
subdivisions of voxels by the influence of noise included in each range image.
We therefore assume that the normal vector is reliable for subdividing voxels.

The algorithm of traversing an octree with adaptive voxel subdivision is
represented as Algorithm 1. In this algorithm, ConsensusSurface(x, Rset)
computes the nearest point p and its normal vector n from the point x. The
changes from the original algorithm are indicated by gray boxes. To determine
whether to subdivide the current voxel N , we consider the curvature of range
images inside the voxel by LocalCurvature(N,Rset). LocalCurvature re-
turns the percentage of range images which satisfies Eq. (10.2). Moreover,
since we subdivide the voxels adaptively, the voxels attain sufficient resolution
even if the threshold value of the magnitude of a signed distance is reduced to√

3
2 w. If voxels are at a fixed resolution, a voxel should be subdivided if one

of the neighboring voxels contains vertices of range images. However, in the
case of adaptive resolution, it is enough to subdivide voxels which contains
vertices in order to attain the sufficient resolution of a merged mesh model.
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Figure 10.5. Edges connecting adjacent voxels in an adaptive octree and the generated mesh
model by MC

Algorithm 1 AdaptiveTraverseOctree(N,dmax, Rset)
Input: Current Node of Octree: N
Input: Maximum Depth of Octree: dmax

Input: Set of Range Images: Rset
Local: Center of N : x
Local: Octree Depth of N : d
Local: Width of N : w
Local: Tuple of Point, Normal: 〈p,n〉
Output: Signed Distance of N : v
〈p,n〉 ← ConsensusSurface(x, Rset)
if (x− p) · n > 0 then
v ←‖ x− p ‖

else
v ← − ‖ x− p ‖

end if

if |v| <
√

3
2

w ∧ d < dmax

∧ LocalCurvature(N,Rset) > Tn then

for all children Ni(i = 0, . . . , 7) of N do
AdaptiveTraverseOctree(N i, dmax, Rset)

end for
end if

3.2 Marching Cubes for Adaptive Octree

The original marching-cubes algorithm can be applied only to voxels that
have the same resolution (size of voxels). We extend the algorithm to triangu-
late voxels at different resolutions as generated in our method.

For voxels that are surrounded by voxels with the same resolution, the ver-
tices of a cube to march are the centers of 8 adjacent voxels. In a similar
manner, voxels surrounded by different size voxels will have a set of adjacent
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Figure 10.6. Partially subdivided cubes

voxels, which are no longer cube-shaped as shown in Fig. 10.5. When we use
voxels of fixed resolution (grids of gray lines), a mesh model of the dotted
line is generated, and its vertices are on the edges of cubes. When we use
adaptively subdivided voxels up to a resolution one level higher (grids of black
lines), the mesh model of a solid line is generated, and its vertices are on
the edges of transformed cubes. If we subdivide the high curvature area into
small voxels, the generated mesh model gets closer to the real surface (gray
thick lines) without increasing unnecessary vertices in planar areas. Since a
transformed cube becomes a skewed rectangle or a triangle in a 2D slice of the
volume, as shown in Fig. 10.5, the vertices of the mesh model generated by
MC are on those edges.

Fig. 10.6 shows three partially subdivided cubes, whose vertices are the
centers of voxels. One of 8 voxels which compose a cube is subdivided in
Fig. 10.6(a). Similarly, two voxels are subdivided in Fig. 10.6(b) and (c).
After subdivision, a cube is partitioned into several forms: for example, in (a),
the number of forms is seven and their vertices are {ABCDdEFG}, {Aabcd},
{ABbdE}, {Ebdfh}, {dEhFG}, {Fcdgh}, and {abcdefgh}. The form com-
posed by {abcdefgh} is a cube, and {Aabcd} is a quadratic pyramid, while
{ABbdE} is not a polyhedron. Since MC interpolates points of zero level on
the edges, the form to which MC is applied is not necessarily a cube, nor even
a polyhedron.

Fig. 10.7 shows examples of a transformed cube. Fig. 10.7(b) is a pyramid,
such as {Aabcd} in Fig. 10.6(a). We can regard that Fig. 10.7(b) is equal to
Fig. 10.7(a) whose upper four vertices have the same signed distance with the
top vertex of (b), and they gather to the position of top vertex of (b). Thus, we
can generate the isosurface of (b) by applying MC to the transformed cube
from (a). By regarding the irregular forms as degenerated and transformed
cubes, MC can be applied to them without creating new tables of mesh gener-
ation for the irregular forms.

Fig. 10.7(c) is {AijbdE} in Fig. 10.6(b) and Fig. 10.7(d) is {BklbdE} in
Fig. 10.6(c). In the case of Fig. 10.7(b) and (c), two triangles are generated.
However, the number of triangles is reduced in the case of Fig. 10.7(d), be-
cause the number of edges of the transformed cube is reduced. We therefore
removed the redundant vertices of the mesh model after generation by MC.
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Figure 10.7. Examples of degenerated cubes and the surfaces generated by MC

4. Adaptive Merging with Reflectance Properties

With regard to applications that utilize geometric models, for instance, 3D
object recognition and localization tasks, it is desirable to construct 3D models
with additional attributes such as color and intensity. With the additional infor-
mation provided by photometric attributes, higher accuracy and robustness can
be expected from those applications. Thus, it is necessary to efficiently create
a model with photometric attributes. In this section, we consider an adaptive
merging method which subdivides voxels based on photometric attributes.

When we acquire a range image using a laser range finder, we can obtain
a LRS value of the surface for each vertex of the range image. Thus, our
proposed method takes a consensus of the reflectance parameters of the target
object from multiple range images. It reconstructs the 3D model with re-
flectance parameters attached per vertex, discarding outliers due to noise and
specular reflection produced in the image-capturing process.

4.1 Laser Reflectance Strength Attached to Range Images

Laser range finders measure distance by shooting a laser and receiving its
reflection from the target object. The distance to a particular point on the tar-
get object is computed by measuring the time duration between the time laser
was shot and the time it was received back in time-of-flight range finders by
measuring the phase difference in phase-transition based range finders, or by
optical triangulation of the illuminant, surface, and optical sensors. In either
case, an LRS value, which is the ratio of the discharged laser strength and the
reflected laser strength, can be obtained per each 3D point. If we assume the
dichromatic reflection model, as the laser can be considered to be light with a
very narrow wavelength distribution, almost a single value, the behavior of the
reflected laser on the target surface can be considered to be the same as the gen-
eral light reflection. Namely, almost isotropic reflection analogous to diffuse
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Figure 10.8. Range images of the Great Buddha of Kamakura using LRS values as pixel val-
ues.

reflection and sharp reflection distributed around the perfect mirror direction
analogous to specular reflection occurs. Since the specular reflection is ob-
served only if the laser is almost parallel to the normal direction of the object
surface, the observed laser is usually caused by the diffusive reflection. Thus,
it is exceptional to observe the specular reflection, which can be regarded as
an outlier. Fig. 10.8 depicts four images using the LRS values attached to
each 3D point as pixel values, rendered from the view point of the laser range
finder Cyrax2400 [53].

LRS values are considered to depend on the characteristics of the surface,
the incident angle of laser light, and the distance from the sensor. The LRS
value which we obtain by a laser range finder is the ratio of the discharged

laser strength and the reflected laser strength. If we assume that the LRS value
depends only on the diffuse reflection, the relationship of the LRS value and
the other parameters are represented by the following equation:

I1 = I0e
−αx (10.4)

I2 = rI1e
−αx cos θ, (10.5)

where I0 is the discharged laser strength, I1 is the incident laser strength on
the surface, and I2 is the reflected laser strength. As for the other parameters,
x is the distance from the laser range finder; α is the absorption coefficient
of the laser in the air; r is the reflectance parameter of the surface; and θ is
the incident angle of the laser (see Fig. 10.9). Since I0 is a given value and
I2 is measured by the sensor, while I1 is unknown, Eq. (10.4) and Eq. (10.5)
become

I2
I0

= re−2αx cos θ. (10.6)

Since the reflectance parameter r is a characteristic value to the surface, we
want to obtain r by using several observations from various viewpoints.

Since we can obtain I2/I0, x and θ for each vertex of range images, the
unknown variables are r and α. The logarithm of Eq. (10.6) becomes

log
I2
I0

= log r − 2αx+ log cos θ. (10.7)
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Figure 10.9. Reflection model of a laser light

Thus, the system becomes a linear equation with two unknowns. Since we
find corresponding points of the range images in taking a consensus of range
images, as shown in Fig. 10.3, we can solve the system if more than two
corresponding points are found. If we have more than three equations, we can
solve the system by the least square method.

Another method to estimate the reflectance parameter r is calibrating the ab-
sorption coefficient α before scanning a target. Since the absorption coefficient
α depends on the atmosphere around the environment of the target, α can be
assumed to be constant for all points in the range images which are acquired
at roughly the same time. If we measure the same point from a fixed direc-
tion with varying distances, we can estimate α by fitting α to the following
equation:

y = −2αx + c, (10.8)

where y = log I2/I0 and c = log r + log cos θ. Once α is determined, the re-
flectance parameter r can be computed by Eq. (10.6); however, the reflectance
parameters of the corresponding points, which are found in the merging pro-
cess, vary because of the specular reflection. Thus, in the merging process,
we take a consensus of r of the corresponding points of the range images.

The reflectance variation of the corresponding points should have a DC com-
ponent because of the invariant diffuse reflection with a sharp peak caused by
specular reflection added to it, which can be observed from a narrow viewing

direction. Thus, if the point is observed from a sufficient number of view-
ing directions, the histogram of the reflectance parameters should have a sharp
peak at the diffuse reflection value, with some distribution around it due to
specular reflection. Fig. 10.10 depicts an example of the LRS values of the
corresponding points for a voxel. Based on this consideration, we take the me-
dian value of the corresponding points as a consensus value of the reflectance
parameter.
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Figure 10.10. An example of the histogram of the reflectance parameter of corresponding
points. Some outliers due to specular reflection are observed. In this case, the median value is
0.04.

4.2 Subdividing Voxels Based on the Reflectance of Range
Images

We have introduced a new criterion of voxel subdivision based on the geo-
metric attributes of the surface for the adaptive merging method in Section 3.1.
As the second criterion of voxel subdivision, we propose the voxel subdivision
based on the variation of the reflectance parameters. Photometric attributes
are used for the criterion of mesh simplification in [45, 47]. We estimate re-
flectance parameters in addition to geometric attributes. For further applica-
tions, such as texture mapping, we subdivide voxels, which are not subdivided
by geometric attributes, from the viewpoint of reflectance parameters. It can
be accomplished in a similar manner as with geometric attributes.

If we subdivide voxels around the drastic variation of reflectance param-
eters, each triangular patch contains almost the same reflectance parameters.
Since the LRS image and color/intensity image of an object are highly cor-
related, those 3D models tessellated with regard to the reflectance variation of
the models are useful to accomplish further texture analysis and synthesis. For
instance, the registration of a 2D image and a 3D model of an object can be
considered. Kurazume et al. [40] used the edges of LRS values attached to a
range image. If we apply this method to our merged 3D model, the subdi-
vision based on the reflectance parameters is desirable to extract fine edges of
reflectance parameters, and we can directly extract 3D reflectance edges from
range images. Moreover, when a texture image is mapped on the adaptive
model subdivided based on the reflectance parameters, view-dependent tex-
ture mapping like [54] can achieve higher compression, since global texture
compression stacking triangular patches with a similar texture can be applied.

In a similar manner to subdividing by the curvature of the surface, our
method computes the variation of reflectance parameters of 3D points inside
the voxel of interest. Now, ri, rj are the reflectance parameters of neighbor
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points included in a range image. If the maximum difference satisfies

max
i,j

(Distance(ri, rj)) < δr, (10.9)

where δr is the threshold and Distance(r i, rj) is the function which com-
putes the difference of two reflectance parameters, the sampling interval is
fine enough for the range image.

Our method also takes a consensus while considering the reflectance param-
eters. Similar to Eq. (10.3), our method does not subdivide the voxel if

Nr

Nall
> Tr, (10.10)

where Nr is the number of range images which satisfy Eq. (10.9), and Tr is
the threshold of consensus for the reflectance parameters.

5. Adaptive Nearest Neighbor Search

In the previous section, we described algorithms for constructing 3D models
that efficiently represent the object by adaptively merging a large amount of
range images. When the number of range images and the number of points
in those range images is very large, it is also crucial to speed up the merging
process. The speed of the whole process depends on how efficiently one can

search the nearest neighbor points. In many cases of merging a lot of range
images simultaneously, most of the vertices of the range images can be dis-
carded from searching the nearest neighbor points, since the portion of range
images which are overlapped at a position is quite small compared with the
total range images.

We introduce an additional test that takes place when traversing the k-d
tree. This test compares the distance from a query to the nearest neighbor
with a threshold defined by the user. Since this method improves the locality
of reference, we can reduce not only the computational cost for searching the
nearest neighbor but also the required memory to traverse a k-d tree. At the
same time with reducing the search cost, this method roughly estimates the
nearest neighbor even if it is far from a query. The signed distance is used
when we fill holes of a model [39]. Since the hole filling works well even if
we do not find the true nearest neighbor, our adaptive nearest neighbor search
is effective.

5.1 Basic Search Algorithm using k-d Tree

First, we explain the basic algorithm by which the k-d tree searches for the
nearest neighbor. Fig. 10.11 shows a 2-D example of a k-d tree that consists
of four leaf nodes labeled A, B, C and D. We do not describe how to construct
a k-d tree in this chapter; for details, please refer to [32].
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Figure 10.11. A 2-D example of a k-d tree

Now we describe how to find the nearest neighbor point from a query point
p. In the search algorithm, we start at the root node and traverse down to the
leaf node that contains the query point. In Fig. 10.11, the leaf node A contains
p, and we compute the distances from p to the records of A.

To avoid examining all leaf nodes, the algorithm prunes branches by the
Bounds-Overlap-Ball (BOB) test [32]. After node A is examined, the distance
from p to the nearest neighbor is d. We examine B if d satisfies the following
BOB test:

d > dB, (10.11)

where dB is the distance from the query point p to the boundary of A and B.
Similarly, we compare d with dC and dD to decide whether or not we will
examine C and D. In this case, d satisfies Eq. (10.11) for B, C and D. Thus, we
have to examine all nodes. If the hypersphere of radius d is completely inside
of a node after examining the node, the algorithm finishes the search. (This is
called the Ball-Within-Bounds (BWB) test.)

5.2 Bounds-Overlap-Threshold Test

In this section, we introduce the Bounds-Overlap-Threshold (BOT) test
to the search algorithm. BOT test prunes branches which are farther than a
threshold δ in the similar manner to BOB test. In Fig. 10.12, the node B and
D are pruned. Though this method is same as the thresholding technique pro-
posed by Zhang [36], his method discards all records farther than the threshold
from the result. In this situation, since the records even in node A are dis-
carded, it finds no records. On the other hand, our method chooses the nearest
one from all the records which are examined while traversing a tree. Thus, it
finds at least a record even if all records are far away from the query. In Fig.
10.12, the nearest neighbor is the record in node A, to which the distance from
the query is d. The pseudo code is shown in the Appendix.



Adaptively Merging Large-Scale Range Data with Reflectance Properties 179

A B

C D

p

d

δ

Figure 10.12. The Bounds-Overlap-Threshold (BOT) test

When we apply the BOT test to the consensus surface algorithm, if the
distance from a voxel to the range images is larger than

√
3

2 w, where w is
the interval of voxels, there is no surface around the voxel. Thus, it is enough
for us to find that no point in the k-d tree is closer than

√
3

2 w, and we set

δ =
√

3
2 w. Our merging method reduces the computation of the SDF in an

octree manner; therefore, the voxel width w varies according to the depth of
octree subdivision to which the current voxel belongs; we adaptively change
the threshold δ as well as the voxel width w.

6. Experiments

For evaluation of our method, we have built a PC cluster that consists of
eight PCs, each equipped with dual PentiumIII 800MHz processors with 1GB
memory, connected by 100BASE-TX Ethernet. Since consensus surfaces can
be computed independently requiring only adjacent voxels, we have proposed a
parallel merging algorithm [55, 56] by splitting the whole volume into pieces
and parallel searching the nearest neighbors. With this parallel implementa-
tion, we are able to handle a huge amount of range image data. In our experi-
ments, we use the Cyrax 2400 and 2500 [53] to measure distances.

6.1 Preliminary Experiment of Estimation of Reflectance
Parameter

First, we verify the reflection model of Eq. (10.7). We measure the same
point several times from different distances. Since the incident angles are con-
stant in this experiment, the reflectance parameters are considered to satisfy
Eq. (10.8). Fig. 10.13 shows the logarithm of the LRS value (log(I2/I0))
at each distance. At far distance (> 20m), the logarithm of the LRS values
becomes almost linear. Thus, it indicates that our model is appropriate and α
is estimated to be 1.7× 10−3.
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Figure 10.13. Ratio of discharged and reflected laser

However, at near distance (< 20m), the logarithm of LRS values becomes
nonlinear. One of the reasons is the focus of the laser beam. Since laser range
finders use lenses to detect the light, the lasers are focused in the expected
range. If the distance of the object is in the unfocused range, a part of the
reflected laser does not land on the receiver. Thus, the reflected laser is clipped
by the receiver and the power of light becomes less than expected. Though this
result occurs in the case of Cyrax, similar effects are expected to occur with
other laser range finders.

Nevertheless, our model works well in the focused range of a laser range
finder; however, we have to take the focus/clipping effects into account when
the object is in the unfocused range. In the following experiments, we mea-
sured objects in the focused range, and the reflectance parameters were com-
puted by Eq. (10.7) with the estimated α. If we use range images acquired in
the unfocused range, a look-up table, which is created from the result shown
in Fig. 10.13, is utilized to estimate the reflectance parameters.

6.2 Adaptive Merging of Range Images

We first apply our method to a standard model from Stanford University [57].
Fig. 10.14 shows the merged results of the bunny from 10 range images.
The upper row (model (a)) is the result without adaptive subdivision, and the
lower (model (b)) is the result with adaptive subdivision based on the geo-
metric attributes. When we merge range images without adaptive integration,
the volume is divided to 128× 128× 128 voxels in the finest resolution. We
used δn = 37◦ and Tn = 0.5 for Eq. (10.2) and Eq. (10.3) for generating
the model (b), which is chosen manually. The model (a) contains 34,667 ver-
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Figure 10.14. Merged models of Stanford bunny. Upper (a): without adaptive subdivision.
Lower (b): with adaptive subdivision based on geometric attributes.

tices and 69,463 triangles, while the model (b) contains 23,671 vertices and
47,338 triangles. The computational times are 10 minutes and 4.8 minutes,
respectively. We computed the difference of (a) and (b) using Metro [58]. The
mean/RMS/max differences are 0.096%/0.23%/2.7% of the longest edge of
bounding box. Therefore, our method effectively reduced the amount of data
and the computational time.

6.3 Adaptive Merging of Range-Reflectance Images

Next, we applied our algorithm to the Great Buddha of Kamakura, whose
height is about 11.3m. We acquired 16 range images with LRS values at-
tached to each 3D point; about 0.3 million vertices and 0.6 million triangles
were contained in each range image. Fig. 10.8 shows four of the range images
with reflectance parameters, and Fig. 10.15 shows the merging result with re-
flectance parameters. Fig. 10.16 shows three different results of our method.
Column (A) contains the models created without adaptive integration, column
(B) contains those created by adaptive subdivision only based on the curvature
of the surface, and column (C) contains those with adaptive subdivision by the
estimation of curvature and reflectance. Row (1) contains wire-frame represen-
tations and Row (2) has polygonal representations of these models. Row (3)
shows the images rendered with reflectance. The far upper and far lower rows
are zoom-ups of the forehead of the Buddha. We used δn = 18◦, δr = 0.1 and
Tn = Tr = 0.5.

When we merge range images without adaptive integration, the volume is
divided to 1024× 1024× 1024(= 210) voxels in the finest resolution, and the
width of the finest voxel is about 1.4cm. The merged model consists of 3.0
million vertices and 6.0 million triangles. The mean difference between the
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Figure 10.15. The merging result of the Great Buddha of Kamakura with reflectance parame-
ters.

merged model and a range image is 2.7mm. It is appropriate compared with
the maximum error of the Cyrax2400, which is about 7-8mm.

The figures in row (2) are rendered using triangular faces. The result of the
adaptive merging (B-2) seems completely the same as the result of the fixed
resolution (A-2). However, if they are rendered by a wire frame, as shown
in Row (1), we can see that our adaptive merging algorithm generates larger
triangles in more or less planar areas. Thus, the size of the result of the adap-
tive merging is reduced to less than 50% of the result of the fixed resolution.
Consequently, the time for merging is also reduced to less than 50%.

Fig. 10.16(A-3) is the result of reflectance merging without adaptive inte-
gration. The texture of reflectance of Fig. 10.16(B-3) is smoothed out com-
pared with Fig. 10.16(A-3). However, by considering the reflectance as a cri-
terion of voxel subdivision, the sharp edges due to the variation in reflectance
are well preserved (see Fig. 10.16(C-3)).

The statistics of the merging process are described in 10.1. The adaptive
merging algorithm reduces the amount of data and computation time required
using the original merging method. We compared the difference between the
models of column (A) and (B), the models of (A) and (C) using Metro. The
mean difference (0.99mm) between (A) and (B) was quite small compared
with the height of the Buddha. Our method successfully reduces the amount
of data and computation time. However, the mean errors are quite small com-
pared with the Buddha size. Also, adaptive merging based on the photometric
attributes successfully reduces the amount of data and the computational time,
while it preserves the edges of the reflectance well.

6.4 Evaluation of BOT test

Fig. 10.17 and Fig. 10.18 show an example of the distribution of the number
of records examined during the search for a nearest neighbor point in merging
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Table 10.1. Statistics of models of the Buddha
Number
of points

Time for
integration

Mean/RMS/Max
difference

(A) 3.0 million 61 min. N/A
(B) 1.2 million 25 min. 0.99/3.5/86 mm
(C) 1.4 million 30 min. 0.44/1.2/66 mm

range images. When we search for the nearest neighbor points using the
BOT test, the number of records examined gets closer to 1 at any distance
from the query. This is because we adjust threshold δ according to the crite-
rion described in Section 5.2. In this example, the total numbers of records
examined are 11,844,253 without the BOT test and 2,716,475 with the BOT
test. Specifically, the computational cost of searching the nearest neighbor
points is reduced to 22.9% of that of the basic search algorithm.

The performance of the BOT test depends on the distribution of distances
from queries to nearest neighbor points. Our method works best when the
portion of the number of nearest neighbor points that are farther than δ becomes
larger. The BOT test can be applied with the variable threshold δ without re-
creating the structure of a k-d tree. Thus, the BOT test works efficiently since
we subdivide voxels in an octree manner.

6.5 Application: Aligning a Merged Model with a 2D
Image

An example of applications utilizing a merged model with reflectance is a
2D-3D registration [40]. Fig. 10.19 shows an example of aligning a 2D im-
age and a 3D model of the Kamakura Buddha with reflectance. Fig. 10.19(b)
is the edges of the color values extracted using a Canny filter [59] from the
camera image Fig. 10.19(a). Fig. 10.19(c) shows the occluding edges and
reflectance edges extracted from the 3D model. In Fig. 10.19(d) and (e), the
method estimates the posture of the camera by taking matching edges of 2D
image (gray lines) and 3D model (white lines). Fig. 10.19(d) is the initial pos-
ture of camera before iterative computation and the posture converges to Fig.
10.19(e). Finally, texture mapping is accomplished using estimated camera
parameter(Fig. 10.19(f)).

7. Conclusion

In this chapter, we have tackled the problem of geometric and photometric
modeling of large-scale and intricately-shaped objects. In modeling such ob-
jects, the following new issues occurred: creating a detailed model from a huge
amount of data, and merging of reflectance parameters of range images.
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Figure 10.16. Adaptive merging results of the Kamakura Buddha with reflectance parameter.

For merging a huge amount of range images, we proposed two approaches:
the adaptive algorithm of merging range images, and a new algorithm for
searching for the nearest neighbor using the k-d tree. First, we developed an
algorithm for constructing a 3D model in an efficient resolution. Taking into
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Figure 10.17. Relationship between distance from a query to the nearest neighbor and the
number of records examined using the basic search algorithm for merging range images.

Figure 10.18. Relationship between distance from a query to the nearest neighbor and the
number of records examined with the BOT test for merging range images.

account the surface curvature and the photometric attributes, we constructed
3D models that have higher detail in surface areas that contain high curvature
and variety of reflectance parameters. If the nearest neighbor point is far from
a query, the nearest neighbor is not used in extracting a merged mesh model.
Thus, we developed the Bounds-Overlap-Threshold test, which approximately
searches by pruning branches if the nearest neighbor point is beyond a thresh-
old. This technique drastically reduces the computational cost if the nearest
neighbor is far from a query.

We extended our merging framework to merge reflectance parameters which
are attached with range images acquired by a laser range finder. By taking a
consensus of the appearance changes of the target object from multiple range
images, we reconstructed a 3D model with an appearance which discards out-
liers due to noise. Also, we were able to provide a model with Lambertian
reflected light values by discarding specular reflections as outliers. The re-
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Figure 10.19. Aligning a 2D image with a 3D model of the Kamakura Buddha using the
photometric attributes of the 3D model.

flectance parameters of the model can be used for aligning 2D images with the
3D model surface.

We have been able to successfully construct detailed models using these
proposed methods; these models have millions of vertices and triangles. Thus,
we can make full use of the power of range finders and can model large-scale
and intricately-shaped objects using a huge amount of range images.

Appendix: Algorithm of BOT test
Algorithm 2 shows the algorithm of BOT test, which is written in a recursive manner. N

is the node of interest. p is the query point. d is the distance of the current nearest neighbor.
rightson(N) and leftson(N) mean the children of node N . d rightson(N) and dleftson(N) are
the distance from the query to the boundary of the right/left child of N . The difference from the
basic algorithm is illustrated in the gray boxes.
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Algorithm 2 SearchNearestNeighborBOT(N , p)
Input: Node N
Input: Query Point p
if N is leaf node then

Examine records of N and compute the smallest d
else

if p is inside leftson(N ) then
SearchNearestNeighborBOT(leftson(N ,p))
if d > drightson(N)

∧ δ > drightson(N)
then

SearchNearestNeighborBOT(rightson(N ,p))
end if

else
SearchNearestNeighborBOT(rightson(N ,p))
if d > dleftson(N)

∧ δ > dleftson(N)
then

SearchNearestNeighborBOT(leftson(N ,p))
end if

end if
end if
if ball(center p, radius d) is within N then

Finish search
end if
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Chapter 11

ITERATIVE REFINEMENT OF RANGE IMAGES
WITH ANISOTROPIC ERROR DISTRIBUTION

Ryusuke Sagawa, Takeshi Oishi, Atsushi Nakazawa, Ryo Kurazume, and Kat-
sushi Ikeuchi

Abstract We propose a method which refines the range measurement of range finders by
computing correspondences of vertices of multiple range images acquired from
various viewpoints. Our method assumes that a range image acquired by a
laser range finder has anisotropic error distribution which is parallel to the ray
direction. Thus, we find corresponding points of range images along with the
ray direction. We iteratively converge range images to minimize the distance
of corresponding points. We describe the effectiveness of our method by the
presenting the experimental results of artificial and real range data. Also we
show that our method refines a 3D shape more accurately as opposed to that
achieved by using the Gaussian filter.

1. Introduction

Large scale 3D modeling technology has become popular and is often used
for modeling industrial plants, buildings, cultural heritages and so on. Using
these technologies, many project scientists are digitizing large scale cultural
heritages or natural scenes.

3D object modeling is accomplished by performing the following three
steps:
(1) Acquiring the range images (Scanning).
(2) Aligning of many range images acquired from different viewpoints (Align-
ment).
(3) Re-generating the unified meshes (Merging).
Usually, during the scanning process, some range images cover the same por-
tion of the object surface to ensure that the whole 3D shape data is acquired.

For the alignment of the small objects, the geometrical relationship between
range images can be acquired easily because the objects’ motions are con-
trolled by using rotation tables or manipulators. However, it cannot be acquired
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for large objects; in such cases, range image matching techniques are used for
the alignment. Many studies have been devoted to achieving this purpose. Besl
proposed a feature point-based matching method [1], while Chen’s method is
based on the evaluation between the point and the polygons. Neugebauer pro-
posed the idea of ’simultaneous registration’ that aligns range images simul-
taneously to avoid the error accumulation of the pairwise alignment methods
[6]. A similar idea was proposed by Nishino et al. [7].

A merging procedure produces unified meshes from aligned range images
. This is achieved by concatenating the polygons’ borders [10], using de-
formable surfaces [4] or implicit functions [2, 11]. Wheeler’s method uses
’signed distance’ to represent the distance from 3D mesh surfaces and their
consensus. As the result, the errors and outliers are eliminated.

The errors of the final 3D model come from these factors.
(1) A measurement error on the range images .
(2) A matching error on the alignment process.
(3) The quantization and equalization errors on the merging process.
The type (2) and (3) errors depend on the object shape and the algorithm, and
so are solved by taking a suitable algorithm according to the objects. For the
type (1) error, Taubin used the spatial smoothing filter [9], but fine features can
be lost during this procedure. Basically, this kind of error cannot be avoided
from one range image by any software algorithms.

Taking many range images on the same surface is one of the solutions for
this problem. Generally, any range measurement system has its characteristic
minimum measurement accuracy and error distributions. Wheeler’s method
is based on this consideration, but is weak for spatially high resolution range
images . The signed distance is calculated along the normal direction of the
surface. If the normal directions are not responsible because of a measurement
error, then the final merging result is so not responsible.

We propose a method to avoid this weakness and improve the accuracy of
the final 3D model. This reduces the measurement errors on the distance value
in the overlapping areas of the aligned range images . By applying this method
before the merging process, a much finer 3D model can be acquired. Unlike
the existing spatial filtering method, this method is able to not only smooth
the surface of the final 3D mesh model but also to extract fine features. In the
following sections, 2 describes our proposed estimation and correction method.
3 shows the result of refinement of artificial and real range data. Finally, we
summarize our method in 4.

2. Proposed Method

Our method corrects errors by iterative computation similar to registration
techniques like ICP[1]. Let us call the base range image the model and others
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Figure 11.1. Measurement error

the ’scenes.’ We search the corresponding points on all scenes of each vertex
of the model. Then, we move every vertex of the model respectively to reduce
the distance of each correspondence. Our method continues this process until
the distances become sufficiently small.

The following pseudo code shows the proposed algorithm:

Algorithm Procedure of Correct Errors
while (error > threshold){

for (i = 0; i < nImage; ++i){
/* range image i is model */
for (j = 0; j < nImage; ++j){

/* Search corresponding points */
/* for all vertices of the model*/
if (i != j) CorrespondenceSearch(i, j);

}
/* Compute the next position of vertices */
MoveVertex(i);

}
/* Update the motion of all vertices */
UpdateVertex(all);

}

2.1 Error model of Range Measurement

Laser range finders measure distance by shooting a laser and receiving its
reflection from the target object. The 3D position of the point of reflection
is computed by the distance and the ray vector. The error of the 3D position
mainly depends on the error of the distance. The error of the vertical direction
to the ray vector, which is caused by the mechanism of the range finder, is
much smaller than the error of the distance. Thus, we assume the error of the
range measurement by a laser range finder is anisotropic and exists only along
the ray vector (Figure 11.1).
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Figure 11.2. Search correspondence

2.2 Correspondence Search

Since we assume that error exists only along the ray vector and that range
images are completely aligned, our method searches corresponding points
along the ray vector. Now, �x is the vector from the center of the sensor to
the vertex of the model and �y is the vector from the center to the corresponding
point of the scene. Then,

�y = a�x (11.1)

where a is the coefficient. Thus, these points are on the same line (Figure
11.2).

To eliminate wrong correspondences, if the distance of corresponding points
is larger than a threshold, we remove the scene point from the correspondence.
We use the maximum error of the range finder as the threshold. This corre-
spondence search is computed for every combination of range images .

2.3 Error Correction

The error is corrected by moving each vertex to the new position, which is
estimated from the corresponding points. Since the direction of error of each
range image is different, some correspondences are not accurate. In the case
that the number of overlapped range images is small, it is difficult to estimate
the accurate point. Thus, we move each vertex to the weighted average point
of the correspondence to gradually converge the error. The kth vertex of ith
range image �xik is moved to the weighted average point

�x′ik = (1−w) · �xik +w · 1
nik − 1

∑
i�=j

�yjk (11.2)

where nik is the number of the corresponding points and w is weight. In this
chapter, we use w = 0.5. This process is applied to all vertices of each range
image respectively. We reiterate it until the error of correspondence converges
enough.
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Figure 11.3. Error by resolution and geometry

2.4 Discussion

The error of corresponding points ε depends on the error of measurement
εMeasure and the error by sparse sampling of a range image εGeometry .

ε = εMeasure + εGeometry (11.3)

εMeasure is corrected by iterative computation. However, εGeometry is caused
by the curvature of the surface and the sampling interval of a range image .

In Figure 11.3, the range measurement is noise-free and the vertices of
range images are on the real surface (namely εMeasure = 0); however, the
error exists between �x and �y. Thus, ε = 0 only if the surface is planar.

ε

{
= 0 planar area
> 0 otherwise

(11.4)

Figure 11.4 shows a 2D example of range images . For simplicity, we assume
the new positions of x2, y1, y2 after an iteration is computed as

x′2 = (1− w)x2 +w((1− α)y1 + αy2)
y′1 = (1−w)y1 +w((1− β)x1 + βx2) (11.5)

y′2 = (1−w)y2 +w((1− γ)x2 + γx3)

where w, α, β, γ are coefficients. After one more iteration, x′2 moves to

x′′2 = (1− w)x′2 + w((1− α′)y′1 + α′y′2)
= w2(1− α′)(1− β)x1 +w2α′γx3 +

((1− w)2 +w2(1− α′)β +w2α′(1− γ))x2 +
w(1− w)(2− α− α′)y1 +
w(1− w)(α+ α′)y2 (11.6)

where α′ is a coefficient. Since the equation of x′′
2 includes the neighbor

vertices x1, x3, the smoothing effect occurs during an iteration similar to the
smoothing filter. However, the weight of x1 and x3 in (11.6) is small compared
with that of the smoothing filter, for example,

x′2 = αx1 + βx2 + (1− α − β)x3, (11.7)
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Figure 11.4. Smoothing effect by iteration
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Figure 11.5. Distribution of errors of Cyrax2500

which does not include y1, y2. Thus, the propagation of the smoothing effect
of our method is slower than that of the smoothing filter.

3. Experiment

3.1 Error Distribution of Laser Range Finder

Among types of laser range finders, a time-of-flight range finder is useful
to measure a far object with high accuracy. We use a laser range finder of
the time-of-flight type, Cyrax 2500 [3] made by Cyra Technologies, Inc. To
estimate the error distribution of the Cyrax 2500, we set the range finder in
front of a concrete wall and measure the distance to the wall many times. We
tested three configurations of different distances, far range (67m), middle range
(20m) and near range (2m) 1. Figure 11.5 shows the result of measurement
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Table 11.1. Distance measurement error of Cyrax 2500

Average distance [mm] Var. [mm2] STD. [mm]

2017.2 (near) 11.0 3.3
21518.0 (middle) 9.1 3.0
67591.1 (far) 7.7 2.8

(a) (b)

Figure 11.6. Artificially created model

(a) (b)

Figure 11.7. Refined model

and the average, variance and standard deviation are shown in Table 11.1. The
error distribution becomes wide in the near range; however, it can be regarded
as a normal distribution with about 3mm standard deviation. The maximum
error is about 7–8mm, which is a little larger than the 6mm (at 50m range) of
the catalog specification.

We did not test the error distribution of the vertical direction to the ray vec-
tor. According to the catalog, it is 0.25mm at 50m range (0.0003 degree),
which is drastically smaller than that of the ray direction. Thus, the error dis-
tribution of the range image by Cyrax 2500 depends on the ray direction.

3.2 Error Correction of Artificial Data

First, we create artificial range images with random noise and experiment
with the error correction. Figure 11.6(a) shows the model without noise. Its
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Figure 11.8. Compare our method and Gaussian filter

Figure 11.9. Great Buddha at Asuka temple

width and height are 40cm, its depth is 20cm and it consists of 100 × 100
points. The range image with noise, of which the maximum is 6mm, is Figure
11.6(b). We create 10 range images to which noises of different direction
are added. The result of error correction is shown in Figure 11.7(a). Figure
11.7(b) is one of range images filtered by Gaussian filter. We can see that our
method corrects errors sufficiently and preserves edges more accurately than
the Gaussian filter. Figure 11.8 compares these two results.

3.3 Error Correction of Real Data

Next, we experiment on the error correction of range images acquired by a
laser range finder Cyrax 2400, whose accuracy is the same as that of the Cyrax
2500.

The observed object is the Nara Asuka Great Buddha, which is considered
to be the oldest Buddha statue in Japan. Its height is about 2.7m. Cyrax 2400
is a range finder for long range, and not suitable for measuring objects of the
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Figure 11.10. Original range image range image

Figure 11.11. Refined range image range image

Asuka Buddha’s size. However, because of the unsuitable environment around
the Buddha, we cannot use a more accurate range finder for close range. Thus,
we measure the Buddha a little apart from it by Cyrax 2400.

We have acquired 9 range images of the front of the Buddha. We align
these range images simultaneously by using a robust registration method [7]
(see Figure 11.10). Since the object is relatively small and the range is near,
the obvious noise can be seen in the range images .

Figure 11.11 shows the result of the error correction by our method. The
noise has been removed from the model and its surface is smooth. In spite
of that, the edges are well preserved because our method is not a smoothing
operation such as the Gaussian filter. In Figure 11.12, the error converges to 0
as the number of the iteration increases.

Figure 11.13 shows the results of merging range images using the original
range images and using the refined range images . We use the merging tech-
nique by Sagawa [8]. Since the method draws a consensus of range images
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Figure 11.12. Convergence of error

Original Refined

Figure 11.13. Results of merging

using the distance and normal direction [11], it can remove the error caused
by measurement and registration. However, in this experiment, it is difficult to
correct the error because the range images are too noisy and its normal direc-
tion cannot be relied on. We can see that the error remains in the merging result
which uses the original range images in Figure 11.13. On the other hand, the
accurate model is reconstructed in the merging result with the refined range
images . In the area where range images are not overlapped such as the side
of the head, the error is not removed.

We compare our method with the model filtered by the Gaussian filter. Fig-
ure 11.14 shows a part of the model filtered by the Gaussian filter after merging
and the model merged from refined range images . The model with Gaussian
filter is smoothed out; however, our method removes noise and preserves the
edge of the surface.

Finally, we consider whether our method can be applied to other range find-
ers, for example, a stereo range finding system. We construct a multi-baseline
stereo system [5], which consists of 9 cameras. Figure 11.15 shows one of
the camera images and a stereo range image . Since the multi-baseline stereo
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Gaussian Filter Our Method

Figure 11.14. Compare with Gaussian filter

Original camera image Stereo range image

Figure 11.15. Range measurement by stereo

generates a range image for each camera by taking matching with the other
8 cameras, we generate 9 stereo range images . These range images are
pre-aligned by stereo calibration. Thus, our refining process can be applied
straightforwardly to the 9 range images . In the raw stereo range image (Fig-
ure 11.16(a)), we can see the step-shaped error caused by quantization of im-
ages. Figure 11.16(b) is the refined model after 10 times of the iteration. The
step-shaped error is removed after refinement . Also, Figure 11.16(a) contains
a lot of debris due to mismatching. Since the refining process is namely an
estimation of the confidence of range data, we can regard the vertices of the
range image which cannot be refined as unreliable vertices. Figure 11.16(c)
is the range image after the unreliable vertices are removed.

4. Summary

In this chapter, we have proposed an efficient range image refinement
method under the consideration of unique error distributions of multiple range
images . We described how we applied this method to the modeling of the
artificial test object and the actual cultural heritage object from the images
acquired by the time-of-flight range sensor. Finally, we applied our method
to the range images which are generated by the multi-baseline stereo system.
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(a)Raw model by stereo

(b)Refined model

(c)Remove unreliable vertices

Figure 11.16. Refinement of range image range image by stereo

The experimental result shows the validity of this method compared with that
of the existing filter-based methods.
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Notes
1. The recommended range of Cyrax 2500 is 1.5–50m.
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Chapter 12

HOLE FILLING OF 3D MODEL BY FLIPPING
SIGNS OF SIGNED DISTANCE FIELD IN
ADAPTIVE RESOLUTION

Ryusuke Sagawa and Katsushi Ikeuchi

Abstract When we use range finders to observe the shape of an object, many occluded
areas may be found. These become holes and gaps in the model and make it
undesirable for various applications. We propose a novel method to fill holes
and gaps to complete this incomplete model. As an intermediate representation,
we use a Signed Distance Field (SDF), which stores Euclidean signed distances
from a voxel to the nearest point of the mesh model. By using an SDF, we can
obtain interpolating surfaces for holes and gaps. The proposed method gener-
ates an interpolating surface that is smoothly continuous with real surfaces by
minimizing the area of the interpolating surface. Since the isosurface of an
SDF can be identified as being a real or interpolating surface from the mag-
nitude of signed distances, our method computes the area of an interpolating
surface in the neighborhood of a voxel both before and after flipping the sign
of the signed distance of the voxel. If the area is reduced by flipping the sign,
our method changes the sign for the voxel. Therefore, we minimize the area of
the interpolating surface by iterating this computation until convergence. Un-
like methods based on Partial Differential Equations (PDE), our method does
not require any boundary condition, and the initial state that we use is automati-
cally obtained by computing the distance to the closest point of the real surface.
Moreover, because our method can be applied to an SDF of adaptive resolution,
our method efficiently interpolates large holes and gaps of high curvature. We

tested the proposed method with both synthesized and real objects and evaluated
the interpolating surfaces.

1. Introduction

Recently, many researchers have focused on modeling the shape of real-
world objects by scanning them using three-dimensional digitizers, such as
laser range finders [1, 2] and structured-light range finders [3]. These methods
measure distances from the point of view to the surface of the object, which
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can be seen from the sensors. A range finder obtains a range image that
contains the measured distances for each pixel by two-dimensional scanning.
Thus, to acquire the whole shape of an object, we have to scan it from various
viewpoints by using those sensors. If the object has an intricate shape, many
occluded areas may occur. Consequently, there are often unobserved surfaces,
even when full use is made of the various kinds of sensors. However, it is too
costly to take range images from various viewpoints to cover every hole that
is not observed by a full range image. In the worst case scenario, we are not
able to obtain the data needed to create a complete model. However, we need
to fill these holes to make use of constructed models in many different applica-
tions, such as creating a solid model and visualizing the model. Therefore, we
propose a new method that enables us to complement the geometric models by
estimating the neighborhood area of the holes and filling the holes and gaps.

Since filling the holes of a model is a major issue in this field, several ap-
proaches have previously been proposed. The simplest approach is interpo-
lation by triangulating the boundary vertices of a hole. Liepa [4] fills holes
by triangulation, adjusting the size of triangles. If the hole is small and the
topology is simple, the triangulation works well; however, triangulation be-
comes difficult if the surface is intricate and the hole is large. The second
approach is to fit a mesh model around the hole, that is, a three-dimensional
version of snakes and related studies [5–7]. In these methods, a deformable
surface moves iteratively to fit the model by satisfying the smoothness con-
straint. However, since they determine topology a priori, these methods are
not suitable for intricately shaped objects. The third approach is called “space
carving.” Curless and Levoy [8] tag one of the states, unseen, empty, and near
the surface, to each voxel during the merging process. The hole filling is ac-
complished by generating a surface between voxels of unseen states and those
of empty states. Since space carving methods do not consider viewing objects
from other viewpoints, the result of rendering from different viewpoints may
be far from acceptable. The fourth approach is interpolation by volumetric
representation, such as level-set approaches [9, 10] and re-computation of the
implicit surface [11, 12]. Davis et al. [12] re-compute the implicit surface
by diffusing the signed distance function from the vicinity of the observed sur-
face to the whole volume. Some other volumetric-based methods are proposed,
such as a PDE-based method [13] that minimizes the divergence of implicit
surface, a method based on Finite Element Methods (FEM) [14] that mini-
mizes the mean curvature of implicit surface, and a method [15] interpolating
an SDF by fitting quadrics. Since the volumetric-based methods use voxels
of fixed resolution, they are not efficient to fill large holes and high curvature
gaps. Moreover, though the PDE-based methods requires an initial state and a
boundary condition of an interpolating surface, it is difficult to give an initial
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state automatically, and it is not simple to implement a boundary condition
because the shape of the boundary of a hole has a great deal of variation.

Our method is similar to the third and fourth approaches. In our framework,
we compute the SDF using multiple real surfaces, which are the surfaces mea-
sured by sensors. Since we separate the entire volume into two manifolds by
SDF, we can generate a closed surface by converting the SDF to a mesh
model. In this chapter, we propose a method that obtains an interpolating sur-
face by minimizing the curvature at the same time that the interpolating surface
is smoothly continuous with the real surface. Unlike PDE-based methods, our
method does not require a boundary condition, and the initial state that we use
is automatically obtained by computing the distance to the closest point of the
real surface. Thus, our method is very simple to implement. Moreover, since
our method can be applied to an SDF of adaptive resolution, it is efficient to
fill large holes and high curvature gaps by using voxels of appropriate resolu-
tion for the shape of the holes.

This chapter is organized as follows. We define an interpolating surface that
is a goal for our method in 2. In 3, we briefly explain a method to compute an
SDF from real surfaces to give the initial state automatically, and we also point
out the problems of the interpolating surface that is generated from SDF. We
propose a method to obtain a desirable interpolating surface in 4. We report
the testing of our method and evaluate the interpolating surface in 5. Finally,
we summarize this chapter in 6.

2. Hole Filling by Minimizing the Curvature of the
Interpolating Surface

A real surface measured by a range finder has boundaries such as occluding
boundaries. Since a closed surface is generated by filling holes of surfaces by
our method, a hole of surface to be filled is defined by the boundaries of real
surfaces. At the same time, an interpolating surface is defined as a surface that
is included in a closed surface, but not in the real surface.

The surface that is suitable for filling holes depends on applications. In
this chapter, we interpolate holes by minimizing the curvature of interpolating
surfaces that are smoothly continuous with real surfaces. In this section, we
analyze the issue and define the goal of the interpolating surfaces.

In the level set formulation [16], the surface is represented as the zero level
set f(x) = 0, where the implicit function f(x) means the distance from the
surface to the point x. The zero level isosurface f(x) = 0 evolves according
to the following partial differential equation:

∂f

∂t
+ F |∇f | = 0. (12.1)
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If we consider the curvature κ of the isosurface, which is computed by κ =
∇ · ∇f

|∇f | , the speed function F = −κ is used in several cases, such as the heat
equation. If the boundary is defined as the position of the surface, it is well
known that the highly curved surface is smoothed out and the surface becomes
closer to a minimal surface [17]. A minimal surface is the surface of which
the mean curvature is zero at arbitrary points and the area becomes minimum
by satisfying the given boundary condition.

Since our goal is generating a surface to fill a hole by minimizing the curva-
ture of the interpolating surface, it is similar to a minimal surface. However,
we must consider not only the position on the boundary of real surfaces, but
the continuity with them. Thus, the boundary condition for this issue is both
the position and normal vector of the surface. Therefore, a desirable surface is
obtained if the change of surface is represented by the speed function, which
smoothes out the curvature of the surface while at the same time keeping con-
tinuity with real surfaces.

To solve the problem based on the PDE-based method, the initial state and
boundary condition are necessary. However, it is difficult to give the initial
state automatically, and not simple to implement a boundary condition because
the shape of the boundary of a hole has a great deal of variation and the 3D
domain to be considered is unknown a priori. Thus, instead of a PDE-based
method, we propose a method that gives the initial state automatically and
iteratively computes an interpolating surface without any boundary condition.

Since our method is a volumetric approach, the topology of a hole is not
necessary to be given. Our method certainly generates a closed surface and has
no restriction on the shape and size of a hole unless the interpolating surface
diverges out of the 3D space to be operated.

3. Computing Initial State from Real Surfaces

In this section, we explain the computation of an SDF from real surfaces.
Our method uses the SDF as an initial state to estimate an interpolating surface.
First, we explain the computation of an SDF from range images, and then

we point out a problem in computing the signs of an SDF.

3.1 Computing SDF from Range Images

Since a range image can be converted to a mesh model, a range image is
represented as a mesh model which consists of 3D vertices and triangles that
connect the neighboring vertices. Some methods of merging range images [8,
18, 9, 19, 20] use an SDF as an intermediate representation of the surface, and
there are several ways to compute a signed distance. For example, Curless and
Levoy [8] used the distance between a voxel and the point of a range image
along the line of sight of the range image. Wheeler et al. [18] used the
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Center of a voxel

Edges of cubes for marching

Reconstructed surface with adaptive resolution

Figure 12.1. A 2D slice of an SDF of adaptive resolution: The gray lines indicates the bound-
aries of voxels of adaptive resolution. A mesh model is generated by interpolating the signed
distances. The vertices of the mesh model exist on the edges that connect the centers of voxels.

closest point of a range image from the center of a voxel to compute the signed
distance.

In this study, we assume that the magnitude of a signed distance is the Eu-
clidean distance from the center of a voxel to the closest point of range images.
We compute an SDF by our merging algorithm [21, 22]. Since the magni-

tude of the signed distances of the method is Euclidean distances, we use the
SDF as an initial state of the new method proposed in this chapter. Naturally,
we can apply our new method to the SDF created by other methods if the SDF
satisfies this assumption.

In our merging algorithm, the sign of a signed distance is determined by
considering the normal vector n of the closest point, which faces outside and is
computed by averaging the normal vectors of the triangles to which it belongs,
and the vector v from the center of the voxel v to the closest point. Thus, the
signed distance d(v) is computed as

d(v) = sgn(−n · v)|v|, (12.2)

where sgn(x) is 1 if x is positive and is−1 if x is negative.
Moreover, our merging algorithm proposed in [21] uses voxels of adaptive

resolution in an octree manner. In an area that is far from range images, we
sample the 3D space coarsely and use voxels of large size. If range images
are nearby, we sample the 3D space more finely. The width of voxel W is

determined by the magnitude of the signed distance:

W (v) <
2

3
√

3
|d(v)|. (12.3)

If (12.3) is satisfied, the implicit surface can exist inside the voxel or the
neighbor voxels, since the diagonal width of the voxel is

√
3W (v). We start the

computation of signed distances by finding the closest point of range images
from the center of the largest voxel, which is the root node of the octree
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Figure 12.2. An SDF is computed for a sharp corner. The gray line denotes the true surface of
the object. The black solid lines indicate the range images. Each arrow is the vector from the
center of a voxel to the nearest point. The voxels that have negative signed distances are filled
by gray color. Although the lower left area is obviously outside of the object, it is considered to
be inside by the normal vector of the nearest point. Therefore, the generated surface corrupts,
as represented by the dotted lines.

and can be set independently from range images. If the signed distance does
not satisfy (12.3), we subdivide the voxel to eight voxels. Then, we compute
the signed distances for the eight voxels and apply the procedure recursively
to the finest voxel size, which is given by the user. Otherwise, we stop the
subdivision.

Figure 12.1 shows a 2D slice of an SDF of adaptive resolution. The gray
lines indicate the boundaries of voxels of adaptive resolution. A mesh model
is generated by interpolating the signed distances. The vertices of the mesh

model exist on the edges that connect the centers of voxels. We can change
the level of detail of the mesh model by using an SDF of adaptive resolution.

If we use an SDF of adaptive resolution for hole filling, it is efficient to
interpolate a large hole and a gap of high curvature.

3.2 Problem of Computing Signs of SDF

In this section, we point out the problem of computing a signed distance.
Although we use the SDF computed from real surfaces as an initial state of an
interpolating surface, it is far from a desirable surface in some situations.

In the computation of the initial state of an SDF, we determine the sign by
using the normal vector of a point of real surfaces. The signs determine if a
voxel is inside or outside a surface; however, since a normal vector is a local
feature of a surface, it is not determined from a global point of view. This is a
problem when computing signs of an SDF.

If a hole is much larger than the voxel size, it is difficult to determine the
signs from global point of view by considering only a local feature of a sur-
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(a) (b) (c)

(d) (e) (f)

Figure 12.3. (a) shows a 3D model with holes and (d) is a zoom-up of a sharp corner of (a).
There are some small holes and gaps. (b) and (e) are 2D slices of the SDF computed from
(a). Yellow and red voxels indicate that they have positive signed distances, and blue voxels
indicate negative ones. The magnitudes of the signed distances of red and blue voxels are larger
than those of yellow and light-blue voxels respectively. And green voxels are near the surface.
Though the left side of (e) is outside of the model, voxels of negative signs exist. Therefore, the
generated mesh model from the SDF becomes (c) and (f).

face. The curvature is also a local feature if the voxel size is small. Moreover,
since the initial surface can be very different from the desirable surface, many
steps of iterative computation are required to converge it to a desirable one.
Therefore, we overcome this problem by using an SDF of adaptive resolution
to improve the convergence.

Even if a hole is not large, the initial surface can be far from the desirable
surface when a surface of the object is highly curved. Figure 12.2 shows an
example of computing signed distances when the surface of an object has a
high curvature. The gray line denotes the true surface of the object. The black
solid lines indicate the range images. There is a narrow gap between two
range images. Each arrow is the vector from the center of a voxel to the
nearest point. If a voxel is inside the object when considering normal vectors
of range images, the sign is negative, and the voxel is filled by gray color in
Figure 12.2.

Although the lower left area is obviously outside of the object in Figure
12.2, the signs of those voxels are negative because they are considered to be
inside by the normal vector of the nearest point. If we use the Marching Cubes
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algorithm (MC) [23] to convert the SDF to a mesh model, the generated
surface corrupts, as represented by the dotted lines. The initial interpolating
surface is far from the desirable one even though the gap is narrow.

Figure 12.3(a) shows the real surface of an object that has sharp corners.
Figure 12.3(d) is a zoom-up of one of the sharp corners. Although the gap
is narrow, it is hard to determine whether a voxel is inside or outside near the
corner. Figure 12.3(b) and (e) are 2D slices of the SDF. Yellow and red vox-
els indicate that they have positive signed distances, and blue voxels indicate
negative ones. The magnitudes of the signed distances of red voxels are larger
than those of yellow voxels. Also, blue voxels have larger magnitudes than
light-blue voxels. And green voxels are near real surfaces. Therefore, the re-
sult of converting SDF to a mesh model by MC is shown in Figure 12.3(c)
and (f). Since the signs of some voxels are wrong, many vertices and triangles
are generated outside the object. While a hole is small, it is difficult to restrict
the 3D domain to be considered since the initial surface can be far from the
desirable surface.

In this study, we simply compute a signed distance as the distance to the
nearest neighbor point even if it is on the boundary of a real surface. The
computation of a sign becomes unstable in the case of boundary; however, it is
impossible to determine the sign from the global point of view by using only
a single normal vector even if we use a more elaborate method such as [24].
Thus, we compute it by a simple method in the initialization and improve it by
iterative computation described in 4.

4. Hole Filling by Minimizing the Area of Interpolating
Surface

Though the methods based on volumetric representation [9, 12, 13] com-
pute an SDF during iteration, our method has already computed the SDF dur-
ing merging of range images. In this section, we propose a method that gen-
erates a surface to fill a hole by iteratively updating the computed SDF while
keeping continuity with range images [25]. Though (12.1) with F = −κ
minimizes the curvature of a surface, it is equal to minimizing the area of the
surface in a local domain. Therefore, our method minimizes the area of a sur-
face instead of considering the curvature of a surface. While a PDE-based
method requires a boundary condition and restricts the 3D space to be con-
sidered, these restrictions are not necessary for our method. At the end of this
section, we show that the proposed method approximates (12.1).
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Figure 12.4. Three examples of signed distances of adjacent voxels: The width of the voxels
is 1.0. (a) Both voxels are outside an object whose signed distances are 1.0 and 0.8. Since the
signs of the adjacent voxels are the same, the isosurface does not exist between them. (b) The
signs of the adjacent voxels are different. The signed distances are−0.3 and 0.6. The isosurface
between two voxels represents a real surface. (c) The signed distances are −1.0 and 0.8. The
isosurface represents an interpolating surface.

4.1 Approximation of the Area of Interpolating Surface

The area of interpolating surface A is computed by

A =
∫
V
δ(f(x, y, z))dxdydz, (12.4)

where δ(f) is the delta function and V is the volume that includes the interpo-
lating surface. Since we use discretized voxels to represent the SDF, (12.4)
can be approximated as follows:

Â =
∑
i,j

S(vi, vj) (12.5)

S(vi, vj) =
{
s the interpolating surface exists between v i and vj
0 otherwise,

where vi and vj are two adjacent voxels, and s is the area of surface between
vi and vj . If s = 1, Â equals to the number of interfaces between two voxels.
Therefore, our method minimizes Â instead of A. The issue of computing Â
is to determine which voxels are facing with the interpolating surface.

4.2 Finding Interpolating Surface between Two Adjacent
Voxels

To determine which voxels are facing with the interpolating surface, we
classify the signed distances of two adjacent voxels into the following three
situations:

sgn(d(vi)) = sgn(d(vj))

sgn(d(vi)) �= sgn(d(vj)) and |d(vi)− d(vj)| ≤W (vi)
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sgn(d(vi)) �= sgn(d(vj)) and |d(vi)− d(vj)| > W (vi)

where d(vi) and d(vj) are their signed distances, respectively, and W (v i) is
the width of a voxel.

Figure 12.4 shows three examples of the signed distances of adjacent vox-
els. The width of the voxels is 1.0. In Figure 12.4(a), both voxels are outside
an object whose signed distances are 1.0 and 0.8. Since the signs of the adja-
cent voxels are the same, the isosurface does not exist between them.

In Figure 12.4(b), the signs of the adjacent voxels are different. The signed
distances are −0.3 and 0.6. The gray voxel means that it has a negative signed
distance. Though an isosurface exists between two voxels, it is not an interpo-
lating surface because it represents a real surface.

In Figure 12.4(c), the signs of the adjacent voxels are different, as in Figure
12.4(b). The difference from Figure 12.4(b) is that the signed distances are
−1.0 and 0.8. Though no real surface exists between these two voxels, there is
an isosurface of the SDF between them. Thus, the isosurface is interpolating
a real surface.

If a surface exists between two voxels, the sum of the magnitude of the two
signed distances will be smaller than the width of the voxel as the case of Fig-
ure 12.4(b). On the other hand, in the case of Figure 12.4(c), the sum is larger
than 1, which is the width of the voxel. Therefore, we find an interpolating
isosurface by the following inequality:

sgn(d(vi)) �= sgn(d(vj)) and |d(vi)− d(vj)| > W (vi). (12.6)

Since our merging method uses voxels of adaptive resolution in an octree
manner, the width of the adjacent voxel can be different. Thus, (12.6) is

modified to

|d(vi)− d(vj)| > αD(vi, vj), (12.7)

where D(vi, vj) is the distance of the centers of two adjacent voxels and α is
a parameter defined by the user. If α = 1.0, the condition is equal to (12.6)
except changing W (v) to D(vi, vj). Thus, we use α = 1.0 as a default value.
Moreover, the area of surface s between two voxels changes if we use vox-
els of adaptive resolution. The width of a voxel of the depth level l(v) is
2−l(v), when the width of the root node of an octree is 1; the area of surface
s between two voxels, whose depth levels l(v i) and l(vj), is approximated by
s = 4−max(l(vi),l(vj)), which is the area of the face of the smaller voxel of the
two voxels. Thus, (12.5) can be rewritten as follows:

Â =
∑
i,j

S(vi, vj) (12.8)
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Figure 12.5. A 2D example of adjacent voxels of different sizes: An adjacent voxel shares a
face, edge or corner with the voxel of interest. v1, . . . , v8 are the adjacent voxels of the voxel
of interest v. Since a voxel v2 is larger than v, the area between v and v2 is found twice as an
adjacent voxel. On the other hand, if the resolution of adjacent voxels is finer than the voxel of
interest, both v6 and v7 are considered as adjacent voxels.

S(vi, vj) =

⎧⎨
⎩ 4−max(l(vi),l(vj)) if sgn(d(vi)) �= sgn(d(vj))

and |d(vi)− d(vj)| > αD(vi, vj)
0 otherwise.

4.3 Minimizing Surface Area by Flipping Signs

To minimize the area of interpolating surface, we propose a method that
flips the signs of signed distances, because their signs are important to generate
an interpolating surface. Even after flipping signs, (12.8) can be computed
because the magnitudes of signed distances do not change by flipping the signs.
Thus, our method iteratively updates the SDF to minimize the area. At each
step, we compute the area of interpolating surface around each voxel before
and after flipping the sign. If the area around a voxel decreases by flipping the
sign, we update the SDF by changing the sign for the voxel.

Now, we compute the surface area around a voxel with all adjacent voxels.
If the sizes of adjacent voxels are the same, the number of adjacent voxels in
a 3D space is 26. If the voxel of interest is a voxel of depth level l and has
a signed distance d, we compute the following four types of areas around the
voxel:

Âk(v) =
∑
vi∈Vk

4−max(l(v),l(vi)), k = 1, . . . , 4 (12.9)
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V1 = {vi | |d(v)−d(vi)|≤αD(v, vi), sgn(d(v)) �=sgn(d(vi)), vi∈Vall}
V2 = {vi | |d(v)−d(vi)|>αD(v, vi), sgn(d(v)) �=sgn(d(vi)), vi∈Vall}
V3 = {vi | |−d(v)−d(vi)|≤αD(v, vi), sgn(d(v))=sgn(d(vi)), vi∈Vall}
V4 = {vi | |−d(v)−d(vi)|>αD(v, vi), sgn(d(v))=sgn(d(vi)), vi∈Vall}

where d(vi) and l(vi) the signed distance and depth level of one of the adjacent
voxels vi respectively. Vall is the set of all adjacent voxels. Â1(v) and Â3(v)
are the area of real surface before and after flipping the signed distance d re-
spectively, while Â2(v) and Â4(v) are the area of interpolating surface before
and after flipping it respectively.

An adjacent voxel shares a face, edge or corner with the voxel of interest.
Thus, we find the adjacent voxels for 26 directions of the voxel of interest.
Figure 12.5 shows a 2D example of computing (12.9) with adjacent voxels of
different sizes. v1, . . . , v8 are the adjacent voxels of the voxel of interest v. In
this 2D figure, we find the adjacent voxels for 8 directions in a 2D space. If
an adjacent voxel is larger than the voxel of interest, the same adjacent voxel
is found multiple times. The area is computed multiple times in (12.9). In
this example, since a voxel v2 is larger than v, the area between v and v2

is computed twice. On the other hand, if the resolution of adjacent voxels
is finer than the voxel of interest, the number of adjacent voxels increases.
In this example, the voxels v6, v7 and v8 are smaller than v. Both v6 and
v7 are considered as adjacent voxels though they share the same face with v.
Therefore, Vall = {v1, v2, v2, v3, v4, v5, v6, v7, v8} in this case.

The depth levels of the voxels are l(v2) = 1, l(v) = l(v1) = l(v3) =
l(v4) = l(v5) = 2, and l(v6) = l(v7) = l(v8) = 3. The area of surface
between v and v3 is approximated as 1/22 × 1/22 = 1/16. Similarly, the
area between v and v6 is 1/23 × 1/23 = 1/64, and the area between v and
v2 is 2 × 1/22 × 1/22 = 1/8. Now, we assume that the adjacent voxels are
categorized as follows: the white voxels, v1 and v2, are the case 4, the light gray
voxel v3 is the case 3, the gray voxel v4 is the case 2, and the dark gray voxels,
v5, v6, v7 and v8, are the case 1 in (12.9), respectively. In this 2D example,
the areas becomes as follows: Â1(v) = 1/42 + 3 × 1/43 = 7/64, Â2(v) =
1/42 = 1/16, Â3(v) = 1/42 = 1/16, and Â4(v) = 2× 1/42 + 1/42 = 3/16.

If Â4(v) < Â2(v), the area of interpolating surface decreases by flipping
the sign. We extend this simple criterion as follows by considering the both
real and interpolating surface:

Â1(v) + Â4(v) < β(Â1(v) + Â2(v) + Â3(v) + Â4(v)), (12.10)

where β is a parameter defined by the user. If β = 0.5 and Â1(v) = Â3(v),
the condition becomes Â4(v) < Â2(v), which is the simplest criterion. Thus,
we use β = 0.5 as a default value.



Hole Filling of 3D Model by Flipping Signs of Signed Distance Field 219

+W+W

+W+W+W

-W-W-W

0

Separating planes

Smaller voxels

Figure 12.6. The adjacent volume of a voxel is separated to 9 parts by 6 planes which consists
of the faces of the voxel. This figure shows the 2D slice of an example. Smaller voxels exist
in the adjacent volume (right side). Temporary signed distances are assigned for each part as
follows: if it only includes voxels of positive or negative signed distances, we assign W or −W
respectively, and otherwise, we assign 0, where W is the width of voxel.

If the voxel of interest satisfies (12.10), we can decrease the area of interpo-
lating surface by flipping the sign of the signed distance d(v). Our method iter-
ates flipping the signs until no voxels satisfy (12.10). In some situations, since
it is not always |−d(v)−d(vi)| ≤ αD(v, vi) when |d(v)−d(vi)| > αD(v, vi),
the signs of the flipping voxels may oscillate and the number of flipping vox-
els may not converge to 0. In such cases, we increase α or β and relax the
condition during iteration if the convergence becomes slow.

After one iteration, we can restrict the voxels to examine their signs. If the
signs of a voxel and its adjacent voxels did not flip in the previous iteration, we
do not have to examine it in the current iteration because the result of (12.10)
does not change. Thus, we record the voxels whose signs were flipped, and
examine only these voxels and their adjacent ones in the next iteration.

The pseudo code of the proposed method is as follows. v and v i are nodes
(voxels) of an octree, d(v) and d(vi) are their signed distances, and l(v) and
l(vi) are their levels in the octree, respectively. Since the structure of the octree
is already determined by the process of computing the SDF, this procedure

does not change the structure. α and β are parameters described above. We
use a voxel of the finest resolution at each position as an adjacent voxel. d o(v)
is the new signed distance, which is used in the next iteration. We start this
FlipSign procedure from the root node, and iterate it until no voxels are flipped.
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Algorithm: FlipSign(v)
if need to examine v then
Â1(v), Â2(v), Â3(v), Â4(v)← 0
for all adjacent voxels vi of v do
D(v, vi)← the distance between v and v i

if sgn(d(v)) 	= sgn(d(vi)) then
if |d(v)− d(vi)| ≤ αD(v, vi) then
Â1(v)← Â1(v) + 4−max(l(v),l(vi))

else
Â2(v)← Â2(v) + 4−max(l(v),l(vi))

end if
else
if | − d(v)− d(vi)| ≤ αD(v, vi) then
Â3(v)← Â3(v) + 4−max(l(v),l(vi))

else
Â4(v)← Â4(v) + 4−max(l(v),l(vi))

end if
end if

end for
if Â1(v) + Â4(v) < β(Â1(v) + Â2(v) + Â3(v) + Â4(v))
do(v)← −d(v)

else
do(v)← d(v)

end if
end if
if v is nonterminal then

for all children vj (j = 0, . . . , 7) of v
FlipSign(vj)

end for
end if

4.4 Local Smoothing of Interpolating Surface

By flipping the signs of an SDF, we minimize the area of interpolating
surface. While the resulting surface becomes a smooth surface from a global
point of view, a mesh model generated by MC is not smooth from a local
point of view. The reason is that MC interpolates the signed distances to
generate vertices; however, it is not suitable for interpolating surfaces because
the magnitudes of the signed distances for them are much larger than the width
of the voxels. Therefore, we recompute the signed distances before generating
interpolating surfaces by MC.

First, we separate the adjacent volume into 3 × 3 × 3 = 27 parts by 6
planes which are the faces of a voxel. Figure 12.6 shows the 2D slice of
an example. The adjacent volume is separated into 9 parts in this figure. A
part can include several voxels if smaller voxels exists in the octree as shown
in Figure 12.6. Voxels that have positive and negative signed distances are
indicated by white and gray voxels respectively. Second, to recompute the
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Figure 12.7. Two examples of the relationship between signed distances and curvature: the
sign of the signed distance of the center voxel is opposite to that of the curvature κ.

signed distance, we assign a temporary signed distance to each part as follows:
if it only includes voxels of positive or negative signed distances, we assign
W or −W respectively, and otherwise, we assign 0, where W is the width
of the voxel. Finally, we assign a new signed distance to the center voxel
by computing the average of 27 temporary signed distances. In the case of
Figure 12.6, the new signed distance is 0.22W . Since the scale of a new signed
distance is nearly equal to the width of the voxels, a smooth mesh model can
be generated by MC.

4.5 Analysis of Interpolating Surface

In this section, we analyze the surface that is obtained by generating the
mesh model of an SDF after flipping the signs. The change of a signed
distance updated by our method is represented as dn+1 = dn + G, where d is
a signed distance, n is the number of iterations, andG is the offset by flipping.

When the algorithm flips the sign, G = −2dn. If we discretize (12.1) with
a time step Δt, (12.1) becomes dn+1 = dn − Δt|∇dn|F . By substituting
these two equations, we obtain F = 2dn

Δt|∇dn| . When the algorithm does not flip
the sign, G = F = 0. Consequently, the speed function F is represented as
follows:

F =

{
2dn

|∇dn|Δt if (12.10) is satisfied
0 otherwise.

(12.11)

Since sgn(dn) = −sgn(κ), our method smoothes out an isosurface the same
way as a level set method with F = −κ does by minimizing the curvature.
Figure 12.7 shows two examples of SDF, and + and − mean the sign of
signed distances. If the adjacent voxels that have different signs satisfy (12.7),
the center voxel of both cases in Figure 12.7 satisfies (12.10). The signed
distance of the center voxel d and the curvature κ have the opposite sign.

Because our method approximates the speed function by flipping the signs
of an SDF, the smoothness of the isosurface is not taken into account from
the local point of view as described in Section 4.4. However, it is guaranteed
that an isosurface exists between positive and negative voxels. Therefore,
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Figure 12.8. The gap between two synthesized surfaces is filled by the proposed method: (a),
(b) and (c) The real surfaces of the objects are indicated by blue planes. The white surfaces
are the results of interpolating surfaces obtained by the proposed method. (d), (e) and (f) The
results are represented by the wire-frame. (g) and (h) are the 2D slices of (a) and (b) respectively.
The black lines are the edges of cubes for marching, which connect the centers of voxels in an
octree as shown in Figure 12.1. The real surface is indicated by blue lines. The red lines are the
initial interpolating surface computed from the real surfaces. After flipping signs to minimize
the surface area, we obtain the interpolating surfaces indicated by yellow lines. Green lines
indicate a smooth interpolating surface obtained by recomputing the signed distances.
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the accuracy of our method is defined by voxel size. Since we use an SDF
of adaptive resolution, the speed of convergence is fast where a voxel is far
from the real surface. This characteristic is useful for filling gaps in the high
curvature area and large holes. The resolution of interpolating mesh model
is determined by the voxel size. Since the voxel size is determined by (12.3),
the resolution, which is the density of vertices of a mesh model, is inversely
proportional to the distance to the real surface.

Meanwhile, the convergence of our method is not guaranteed as described
in Section 4.3 because our method is a discretized approximation of partial
differential equations. Thus, we introduced the two parameters, α and β, to
make sure of the convergence. Instead of stopping flipping by the maximum
number of iteration, we relax the condition by increasing α and β to converge
gradually. Since their default values are determined from their definition, we
just increase them slowly to avoid a sudden convergence. If we choose the
slow change of the parameters to become the convergence, it would not be a
sensitive choice because the parameters just make the convergence slow. Even
if we increase them more slowly, although more iterations are necessary before
convergence, the computational cost does not increase so much because the
voxels to be examined is restricted as described in Section 4.3.

5. Experiments

We first evaluate the proposed method with synthesized objects as shown in
Figure 12.8. The real surfaces of the objects, which simulate the observation
of a sensor, are indicated by blue planes in Figure 12.8(a), (b), and (c). A gap
exists between two surfaces for each object. The white surfaces are the results
of interpolating surfaces obtained by the proposed method. Figure 12.8(d),
(e), and (f) show the wire-frame representations of the results. Figure 12.8(g)
and (h) are 2D slices of (a) and (b) respectively. The black lines are the edges
of cubes for marching, which connect the centers of voxels in an octree as
shown in Figure 12.1. The real surface is indicated by the blue lines. The red
lines are the initial interpolating surfaces computed from the real surfaces.

In the case of (g), though the gap is not so large compared to the voxel size,
the initial surface diverges far away from the real surface. After flipping signs
to minimize the surface area, we obtain the interpolating surfaces indicated
by yellow lines. The interpolating surfaces smoothly connect with the real
surfaces from the global point of view. Since they are not smooth from the
local point of view, we recompute the signed distances and obtain a smooth
interpolating surface indicated by green lines.

In the case of (h), the ideal interpolating surface becomes a circular arc
indicated by a dotted line if the curvature is minimized. We estimate the error
of the interpolating surface from the ideal one by computing the distance of
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Figure 12.9. The 2D slices of the results of Figure 12.8(c): (a) with an SDF of fixed resolution,
(b) with an SDF of adaptive resolution. In (a), the real surface is indicated by blue lines, and
the red and light-blue lines are the initial and final interpolating surfaces. The orange line is
the result of Davis’s method after 300 iterations. The light-orange line is the result with three
times larger voxels than that shown in the figure. In (b), the light-blue and yellow lines show
the interpolating surface after flipping signed distances 6 and 18 times respectively. The green
line indicates a smooth interpolating surface obtained by recomputing the signed distances.

the vertices of a mesh model of the surface from the circular arc. If the size
of the finest voxel is 1, the mean distance is 0.27 and the maximum distance
is 1.21, while the width of the gap is 25.3. If we compare the error with the
voxel that generates the vertex, which becomes larger where it is far from the
real surfaces, the mean and maximum distance is 6.5% and 20.0% of the voxel
size respectively. Because the error is small compared to the voxel size, our
method successfully obtains the interpolating surface.

Figure 12.9 shows the 2D slices of the results of Figure 12.8(c). The gap of
Figure 12.8(c) is relatively large compared to the voxel size. We estimate the
effectiveness of the adaptive signed distance field in the case of a large gap.
Figure 12.9(a) shows the results with an SDF of fixed resolution. The real sur-
face is indicated by blue lines. The red and light-blue lines are the initial and
final interpolating surfaces. Since small voxels are used everywhere, the con-
vergence stops before fully minimizing the surface area. We compare Davis’s
method [12] as another method that uses grids of fixed resolution. The orange
line is the result of Davis’s method after 300 iterations. The convergence stops
before fully smoothing out. If the method is applied with large voxels, the re-
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Figure 12.10. Interpolation of large holes and gaps between two range images: (a),(b) are two
range images acquired from opposite viewpoints that are already aligned. (c) is a 2D slice of the
initial SDF computed from the two range images. (d),(e),(g),(h) show the resulting mesh model
of filling holes and gaps. (f) is a 2D slice of the SDF after flipping signs. (i) is a 2D slice of the
generated mesh models.
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(a) (b)

(c) (d) (e)

Figure 12.11. The result of hole filling of the object shown in Figure 12.3: (a) the resulting
mesh model; (c),(d) the zoom-up view around a sharp corner; (b),(e) 2D slices of the SDF after
applying the proposed method.

sults are the light-orange line, which is created with three times larger voxels
than that shown in the figure. In this case, the surface is fully smoothed out,
because the gap becomes relatively small compare with the voxel size.

Figure 12.9(b) shows the results with an SDF of adaptive resolution.
The light-blue and yellow lines show the interpolating surface after flipping
signed distances 6 and 18 times respectively. A smooth interpolating surface
is obtained by recomputing the signed distances as shown by the green line.

When we use an SDF of adaptive resolution for filling a gap, we successfully
obtained the interpolating surface if the gap is much larger than the voxel
size. We do not have to care about the voxel size because it is automatically
determined by (12.3).

Next, we apply our method to a standard model from Stanford Univer-
sity [26]. Figure 12.10(a) and (b) show two range images. They are acquired
from the opposite viewpoints, and the mutual positions are already aligned.
There are large holes and gaps between the two range images because of oc-
clusion. Figure 12.10(c) is a 2D slice of the initial SDF computed from the
two range images. The meaning of the colors is the same as those in Fig-
ure 12.3; for example, yellow and red voxels indicate that they have positive
signed distances, and blue voxels indicate negative ones. Figure 12.10(d) and
(e) are the results of filling holes and gaps and Figure 12.10(g) and (h) are
the wire-frame representations. Figure 12.10(f) is a 2D slice of the SDF after
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Figure 12.12. The result of hole filling by Davis’s method: (a),(b) are the resulting mesh model
after 100 and 300 iterations, respectively. (c) is the zoom-up view around a sharp corner. (d) is
a slice of the volumetric representation of (b).

flipping signs. The isosurface becomes smooth from a global point of view.
Figure 12.10(i) is a 2D slice of the generated mesh models. The range im-
ages are indicated by blue lines, and the red lines are the initial interpolating
surfaces. The green line indicates a smooth interpolating surface obtained
by recomputing the signed distances. Our method successfully interpolates the
large holes by using an adaptive signed distance field.

Next, we test our algorithm using an object shown in Figure 12.3, which has
holes around the sharp corners. Figure 12.11 shows the result of hole filling.
Figure 12.11(a) is the resulting mesh model, and the zoom-up view around
a sharp corner is shown in (c) and (d). Figure 12.11(b) and (e) are 2D slices
of the SDF after applying the proposed method. Since our method uses an
SDF of adaptive resolution, it successfully removed the interpolating surfaces
which are far from the real surface.

Now, we compare our method with Davis’s method [12]. First, we converted
the mesh model of this object shown in Figure 12.3(a) to the volumetric rep-
resentation of Davis’s method by a tool provided by Allen [27]. We adjusted
the parameter so that the size of voxels after conversion was the same as the
original size. Figure 12.12 shows the result of hole filling by this method. Fig-
ure 12.12(a) and (b) are the resulting mesh model after 100 and 300 iterations,
respectively. The interpolating surface still exists where it is far from the real
surface. Figure 12.12(d) is a slice of the volumetric representation of (b). Pos-
itive and negative voxels are represented by white and black. The isosurface
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(a) (b) (c)

(d) (e) (f)

Figure 12.13. The SDF and mesh models of the Great Buddha of Kamakura before filling
holes: it is difficult to observe the top of the head and the inside of the hands, since the Buddha
is a large object. (a) is a 2D slice of the SDF. (b),(c) are the rendering results of the SDF directly
by volume rendering. In (d),(e),(f) the model has many holes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 12.14. The models after flipping the signs of the SDF of the Buddha: (a) a 2D slice
of the SDF; (b),(c) the results of volume rendering; (d),(f),(h) the mesh model rendered with
triangles; (e),(g) the wire-frame representations; (i) the red surfaces are created by the voxels
that do not converge without changing α and β.
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Figure 12.15. The relationship between the number of flipped voxels and the computational
time, α and β. The scales of the number of voxels and computational time are logarithmic.

exists at the voxels of gray. Since it is obvious that the isosurface around the
top-left corner is collapsed, the interpolating surface that are far from the real
surface. The reason is that the method uses a grid of fixed resolution.

The SDF used by our method is divided into 128×128×128(= 2 21) voxels
in the finest resolution; however, since we use voxels of adaptive resolution,
the total number of voxels is 130,521. We construct the resulting SDF by
20 iterations. In this experiment, we set α to 1, and increase β according to
βn+1 = 1.01βn at time nwhen the number of flipped voxels does not decrease.
It starts with β = 0.5, and finally β becomes 0.52 in this case. We tested the
implementation of our proposed method using an Intel Xeon 2.4GHz processor
with 1GB memory. The total time of our method was 5.72 seconds for 20
iterations, while Davis’s method takes 51.4 seconds for 300 iterations.

Finally, we experimented with hole filling of the unobserved surface of the
Great Buddha of Kamakura. Before filling holes and gaps, we got a model
shown in Figure 12.13. It is created from 16 range images; about 0.3 million
vertices and 0.6 million triangles were contained in each range image. The
merged model consists of 3.0 million vertices and 6.0 million triangles. Since
the Buddha is a large object, it is difficult to observe the top of the head and the
inside of the hands. Figure 12.13(a) is a 2D slice of the SDF, and (b) and (c)
are the rendering results of the SDF directly by volume rendering [28]. The
model has a great many holes, which are shown in Figure 12.13(d),(e) and (f).

After flipping the signs of the SDF, we obtained the model shown in Figure
12.14. Figure 12.14(a) is a 2D slice of the SDF, and (b) and (c) are the results
of volume rendering. The isosurfaces that are far from the real surfaces are
removed after flipping signs. Figure 12.14(d),(f) and (h) were rendered with
triangles, and (e) and (g) are the wire-frame representations. We successfully
filled holes of the model by converting the SDF to a mesh model. Because we
used voxels in adaptive resolution, large triangles were generated to fill large
holes using marching cubes with voxels of adaptive size.
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Since the Buddha has an intricate shape, we estimated the convergence of
flipping signs. If α = 1.0 and β = 0.5 are fixed, some voxels oscillate and
the number of flipped voxels does not converge to 0. The red parts in Fig-
ure 12.14(i) depict the surfaces created by the voxels that oscillate without
changing α and β. In this experiment, we increased both α and β according
to αn+1 = 1.05αn if Mn ≥ 0.95Mn−1, and βn+1 = 1.01βn if Mn ≥ Mn−1,
where Mn is the number of flipped voxels at time n. They are empirically
chosen to converge slowly. Figure 12.15 shows the relationship between the
number of flipped voxels and the time for each iteration, α and β; the scales
of the number of voxels and computational time are logarithmic. After the
first iteration, the computational time is drastically reduced because we restrict
voxels to be examined by the method described in Section 4.3. The number of
flipped voxels is reduced quickly at the beginning, and it is much smaller than
the total number of voxels. Thus, the reduction of computation by using the
database of flipped voxels works effectively. Since the number of flipped vox-
els finally becomes zero by changing α and β, the algorithm converges even if
the object has an intricate shape.

The SDF of the Buddha model has 1024×1024×1024 voxels in the finest
resolution, while the actual number of voxels is 17,024,273. Flipping signs is
iterated 97 times, and the total computational time was about 14 minutes. The
memory used was about 550MB at maximum. The number of triangles and
surface areas after filling holes was 5,383,549 and 402.75m2, while those of
the original model were 5,241,486 and 329.23m2. (The height of the Buddha
is 11.3m.) The rate of increase of the triangles was only 2.7%, while that of
the area was about 22%. Thus, our algorithm efficiently filled holes with few
additional triangles.

6. Conclusion

We have proposed a novel method to fill holes of a 3D model. Though the
surface that is suitable for filling holes varies with applications, our method
obtains an interpolating surface by minimizing the curvature at the same time
that the interpolating surface is smoothly continuous with the real surface.
Our method computes a signed distance field and minimizes the area of inter-
polating surface by computing it in the neighborhood of a voxel both before
and after flipping the sign of the signed distance of the voxel. The initial state
that we use is automatically obtained by computing the distance to the closest
point of the real surface. Unlike PDE-based methods, it is not necessary for
our method to define both a 3D domain to be considered and a boundary con-
dition. Moreover, in cases where a hole is much larger than the voxel size, and
a gap exists on an edge of a sharp corner, the relative voxel size compared to
the size of a hole is important for the convergence of iteration. Therefore, our
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method uses an adaptive signed distance field that consists of voxels of adap-
tive resolution. The efficiency of our method was validated in the experiments
by using synthesized surfaces and real range images. As future work, we will
improve the accuracy that is determined by the voxel size, by post-processing
to obtain an optimal interpolating surface. Moreover, though the voxel size is
determined by (12.3), we will estimate the optimal size of voxels in an adaptive
SDF to fill holes.
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Chapter 13

SIMULTANEOUS REGISTRATION OF 2D IMAGES
ONTO 3D MODELS FOR TEXTURE MAPPING

Ryo Ohkubo, Ryo Kurazume, and Katsushi Ikeuchi

Abstract
Recently, creation of realistic 3D contents through sensing the real world has

become fundamental for many applications. To enhance 3D geometric models
obtained through laser range scanners with their textures reconstructed from
several photographic 2D images taken from various view points, it is necessary
to determine the camera position and orientation relative to the 3D models for
each of the images.

In this chapter, a registration method is proposed, which automatically and
simultaneously aligns multiple 2D images onto a 3D model. For each iteration
process, correspondences between 2D edge pixels and 3D edge points are au-
tomatically searched and updated. Besides these 2D-3D edge correspondences,
2D-2D edge correspondences on 3D surface model are also considered simul-
taneously for global optimization among all the images. Errors are minimized
by using conjugate gradient search, utilizing M-estimator for robustness. From
texture mapped objects, the usefulness of the proposed simultaneous registra-
tion method is shown. Also, it is applied to the creation of digital cultural assets.

1. Introduction

1.1 Background

In recent years, widespread demand for 3D contents have been greatly in-
creased in many areas: computer graphics, entertainment, E-commerce, preser-
vation of cultural assets, ITS(Intelligent Transportation System), etc. However,
most of them are created manually by human experts using 3D modeling sys-
tems and this input process is normally very time-consuming. To simplify the
process, some research have been investigated to aid designers through novel
human interfaces, like SKETCH[34] and Teddy[11].

On the other hand, in many situations, to obtain 3D models by observation
of real world objects is much more convenient and reasonable. One obvious
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example is the faithful modeling of cultural heritages. In this case, it is essen-
tial to create realistic 3D models by measuring those objects through sensors.
Recently, such measuring-techniques and algorithms for processing acquired
data have been rapidly developed by many researchers.

The term “3D model” can be classified into three detailed categories: geo-
metric model, physical model and environmental model. Therefore, to acquire
the complete 3D model through observation, several processes are necessary
and vast numbers of studies have been made in wide fields.

A geometric model represents the shape of objects. It is usually composed
of the vertex and mesh structure (or sometimes by voxels). To build these data,
several steps are necessary. First, several range images are measured by laser
range scanners from various viewpoints and directions. For each pixel of a
range image, the distance to the object at respective direction is stored. There-
fore one range image contains shape information from one direction. Next,
registration calculation is applied, which aligns multiple range images from

various viewpoints to obtain the whole shape [2, 4, 24, 21]. Finally, they are
merged to form a unique consensus surface of the object [17, 25].

A physical model represents colors and reflectance properties of surfaces
and is an essential factor for rendering. There are numbers of research for
decades and various reflection models have been studied [12]. However, the
pursuit of the exact analysis is significantly difficult because the radiance ob-
served in the scene is caused by complex interactions among surface intrin-
sic colors, surface reflection functions, viewing position, illumination condi-
tions, inter-reflection, etc. Recently, several novel methods have been proposed
to model realistic appearances of real objects utilizing 3D geometric models
[29, 22].

An environmental model includes illumination distributions and interactions
between surrounding objects (like shadows and inter-reflection), and plays an
important role in achieving the mixed reality. Although it is quite difficult
to formulate such a model, several approaches have been investigated lately.
Global illumination is measured using a fisheye lens or a mirror ball, so that
virtual objects are seamlessly synthesized onto an image of a real scene with
correct shadings [27, 5, 6]. High dynamic range radiance maps which are
supposed to be necessary in illumination measurements, are recovered from
multiple photographs [19, 7]. Imari et al. [28] have directly estimated the
illumination distribution of a real scene from a radiance distribution inside
shadows cast by an object in the scene.
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Recently, much interest has been focused on a physical model since nowa-
days the geometric models can be obtained accurately, and the need for realistic
rendering of these geometric objects has increased.

Although there are various algorithms to recover detailed physical proper-
ties, the texture mapping method is a good compromise between the complex-
ity and the quality of appearance. It does not require a large number of pho-
tographs which are usually necessary to obtain more complex physical mod-
els, and makes the measurement process easier and more practical for the wide
range of applications. Indeed, the restrictions at the measurement time can be-
come a big bottle neck in practice. Another advantage of the texture mapping
method is that it can be processed entirely by normal 3D graphics hardwares.

However, for the texture mapping and the other methods which acquire the
photometric attributes of 3D geometric models using 2D photographic images,
it is necessary to know camera positions and directions relative to the 3D ge-
ometric models. In other words, camera parameters are required to map the
coordinates between the 3D world and the 2D images.

1.2 Obtaining Camera Parameters

In most researches concerning the physical models, camera parameters have
been usually assumed to be known. They can be estimated using camera cal-
ibration, which is a well-studied problem [10, 32, 36, 9]. In addition, there
exist some 3D scanners which can obtain both a range image and a photometric
image at the same time, which means the precise camera parameters relative
to the 3D geometry are always known for each measurement. However, there
are several drawbacks in the use of camera calibration and these 3D scanners,
and we cannot always assume camera parameters to be known. First, although
camera calibration methods are practical for the experiments taken place in the
laboratories, it is inconvenient and often quite difficult to use them in the out-
door environments, especially in large-scale environment. Second, in the case
of 3D-2D integrated sensors, 2D capturing systems attached to such sensors
are often inferior than normal digital cameras. The image captured by them
has worse quality and lower resolution, and they cannot allow sufficient con-
figurations of capturing system like shutter speed, aperture, etc. Mounting a
separate high-quality digital camera on a 3D scanner and fixing their relation-
ship completely can solve this problem. Relative camera parameters against
the 3D scanner can be calculated by camera calibration beforehand and such
a system can emulate 3D-2D integrated scanners. Indeed, it can become a
practical solution in many cases. Even so, there are several situations where
it is favorable or necessary to take photographs separately from 3D geometry.
Generally, the required sampling density for 2D photometric images is often
different from 3D geometry, so extra capture of 3D data may burden the capac-
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ity and the processing time. Furthermore, the measuring situation in practice
often causes various constraints and may make it impossible to use such large-
scale devices: e.g., the measurements of the unfavorably located objects like
cultural heritages, the measurements under controlled lighting conditions, etc.

Under the condition of uncalibrated cameras, 2D-3D registration is nec-
essary to estimate camera parameters. There have been numerous 2D-3D
registration researches and their aims are not necessarily restricted to the tex-
ture mapping, e.g., for object recognition, robot navigation, medical image
processing, and etc.

2D-3D registration algorithms require some kinds of information about
correspondences between 2D features and 3D features. The simplest corre-
spondence information is specified by a set of point pairs between the 2D
image and the 3D geometric model. From these correspondences the cam-
era parameters for the 2D image can be directly calculated using standard
camera calibration algorithms [10, 32, 36]. However, the problem is to find
these points and pairs. Without using markers, it is difficult and not robust
to detect these points and pairs automatically through image processing tech-
niques. Therefore, specifying a set of corresponding pairs manually, i.e., the
pixels on the 2D image and the corresponding points in the 3D geometries,
is a commonly used approach [23–1, 20]. Since the accuracy of the obtained
camera parameters heavily depends on the accuracy of point-pairs specified
by the user, Neugebauer et al. [20] have refined the registration results by
considering the outline of the object and the intensities of images. Instead of
using a set of point pairs, a set of corresponding lines is also used to derive the
camera parameters of each image [31]. They extract planar regions from the
range image and a 3D line is obtained by the intersection of these regions. It is
manually matched to a 2D line extracted from the image.

Debevec et al. [8] have used simple predefined models like a box and a
wedge, to recover both camera parameters and 3D geometries from only pho-
tographic images. By manually specifying locations of parametric primitives
for each photograph, both primitive parameters and camera parameters can be
obtained at the same time.

Although the methods which need 2D-3D correspondence information spec-
ified manually by the user are robust and practical in some cases, they require
tedious labor and they would fail when the number of input photographs in-
creases. For this reason, automatic algorithms to create the correspondence
information are investigated. Instead of directly searching corresponding fea-
tures like points and lines, which is usually not a robust and practical process,
the methods which use more structured features such as contours and edges
and use the error minimization framework are proposed.
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Lavallée et al. [15] have proposed a registration method which use the
outline of a 3D object from volumetric medical data. The pose of a 3D smooth
surface is estimated by minimizing the distance between a 3D object surface
and the projection of camera-contours in 2D X-ray projections.

In the field of robot vision, the pose information of the object is estimated
by the edgel correspondences [33]. The edgel is the element of the edge and
their correspondences are automatically searched and updated through iterative
calculations. Based on this algorithm, the registration methods for texture
mapping have been studied [14, 13] and this study also utilizes this technique.

Lensch et al. [16] have used the silhouette information. The silhouette of
a 3D object generated by the 3D geometric model and the silhouette extracted
from the 2D image are compared and their distance is minimized by using
downhill simplex method. It can utilize the acceleration of graphics hardwares
for a calculation speed and register the image without user intervention through
multi-resolutional approach. However, extracting the exact silhouette from 2D
image is very difficult in real outdoor environments.

A few works mentioned above [16, 20, 13] have also considered the global
registration problem. Besides registering each 2D image respectively, they

also consider a multi-view global optimization. This is because even if one 2D
image is thoroughly registered to the 3D object in the error metric of that view-
point, it does not necessarily mean it is globally optimal. Due to various errors
such as the inaccuracy of 3D geometry, the resolution of pixels, lens distor-
tions, etc., it is impossible to make exactly correct registration. Therefore, the
errors always exist and they need to be distributed globally. Otherwise, when
textures are mapped using multiple photographs, undesirable artifacts may be
caused around the boundary where textures from different views intersect.

In [20] and [16], the points on the 3D surface which are visible from mul-
tiple images are used for the optimization of 2D-2D registration. For such
points, the former method calculates a 3D euclidean distance to the nearest
edge on each visible image and minimizes these differences. The latter uses
the difference of colors projected from each visible image. For the color com-
ponent, hue and saturation channels are used to reduce the influence of the
specular element.

Kurazume et al. [13] have used the technique of epipolar geometry, in-
stead of minimizing the differences of image attributes on the 3D surface
points. It extracts the point correspondences between adjacent images using
KLT method [30] and calculates the relative camera transformation and the
epipolar lines of corresponding point pairs [35]. For the global registration,
the sum of distance between the point and its corresponding epipolar line on
each image is considered. However, finding corresponding points between two
images is a very difficult task, so directly depending on these results makes the
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registration process not robust. Further, when epipolar lines are almost paral-
lel, which is often the case in adjacent photographs taken closely, this method
does not work along the direction of these lines.

1.3 Overview

In this chapter, a novel registration method is proposed, which automati-
cally and simultaneously aligns multiple 2D images onto a 3D model. Through-
out iterative calculations, the correspondence information between 2D edge
pixels and 3D edge points are automatically searched and updated. Therefore,
there is no need to specify corresponding points or lines manually. In addition,
the global optimization among all the images are also executed by the simul-
taneous registration of 2D-2D edge correspondences on 3D surfaces. Outliers
are eliminated using M-estimates and the errors are minimized by conjugate
gradient search. Registration results are shown with the texture mapped ob-
jects and the usefulness of the proposed simultaneous registration method is
shown. In addition, the application for the creation of digital cultural assets is
also presented.

The remainder of this chapter is organized as follows. In Section 2, mathe-
matical notations and camera parameters which are used in this thesis, are ex-
plained. In Section 3, a registration algorithm concerning the single 2D image
and the 3D geometric model is presented. In Section 4, multiple 2D images are
simultaneously registered to the 3D model through the global optimization. In
Section 5, experiments are shown and results are examined. Finally, in Section
6, the summary and future work are mentioned.

2. Preliminaries

2.1 Mathematical Notation

Vectors are expressed in boldface type: x is a vector, x is a scalar.

Unit vectors have the hat symbol: x̂ is a unit vector.

Matrices are expressed by the capitalized and boldface character: M is a
matrix, and especially, I is the identity matrix and R is a rotation matrix.

x will be used to denote the 3D coordinate of the 3D geometric models.

y will be used to denote the 2D coordinate of the 2D photometric images.

U will be used to denote the 2D coordinate which is projected from the
3D world (note, this is the only vector that will be capitalized).

Vectors should be assumed to be three dimensional except for the above.
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Figure 13.1. The world coordinate system and the camera coordinate system

2.2 Camera Parameter

The 3D geometric objects are located in the world coordinate system and
the camera is also located in the same world, viewing the objects. Seen from
the camera, the coordinates of objects are expressed in the camera coordinate
system. They are illustrated in Figure 13.1 The camera is located at C and this
point is named “focal point”. Zc represents the viewing direction.

The transformation between world and camera coordinates can be described
with the set of rotation and translation, 〈R, t〉. Since they represent the camera
position and orientation, they are called “camera extrinsic parameters”. Let a
3D point in the world coordinate be xw = (xw, yw, zw). Then, the coordinate
of the point in the camera coordinate system, xc = (xc, yc, zc), is expressed as



244 DIGITALLY ARCHIVING CULTURAL OBJECTS

follows: (
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1

)
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)
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The photographic image can be obtained by projecting the camera-centered
view onto the image plane (in Figure 13.1). The point c at which the view-
ing direction and the image plane intersect, is named the “principal point”,
and the distance between that point c and the optical point C is called the “fo-
cal length”. Let the projected 2D point on the image plane be U, then the
projection equation can be written as follows:

u = P
(

R t
0T 1

) (
xw
1

)
(13.2)

= P
(

xc
1

)
(13.3)

where u =

⎛
⎝ u
v
w

⎞
⎠ , U =

( u
w
v
w

)
(13.4)

P is a 3×4 projection matrix and contains various parameters. They are called
“camera intrinsic parameters”, and details are shown below.
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They consist of the focal length, principal point, aspect ratio, and skew.

As we have seen, there are two kinds of camera parameters: the intrin-
sic parameters and the extrinsic parameters. However, estimating both the
extrinsic parameters and the intrinsic parameters simultaneously makes the
registration process unstable and not robust. Therefore, only the extrinsic pa-
rameters, i.e., the camera rotation and translation 〈R, t〉 are optimized in this
thesis. To robustly refine the focal length along with the registration process
remains one of the future work.

Aside from the 2D-3D registration process, the camera intrinsic parameters
need to be estimated using the camera calibration method. Among intrinsic

parameters, important components are the focal length f , and the principal
point (u0, v0). Although the precise parameters are only acquired through
camera calibration, we can obtain their approximate estimates in a easy way.
First, the skew and the aspect ratio can be ignored in the recent digital cam-
eras. And often, the principal point are also presumed to be (0, 0). Further,
the approximate focal length can be obtained by EXIF (Exchangeable Image
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File) and DCF (Design rule for Camera File system) data which are recorded
in JPEG/TIFF files captured by digital cameras.

In practice, besides the camera intrinsic and extrinsic parameters, lens dis-
tortions also affect the obtained photographic image. They primarily consists
of the radial distortions and the tangential distortions, which are especially
outstanding when the wide-angle lenses or the small handy cameras are used.
Lens distortions can be estimated by various camera calibration methods and
they should be removed before any image processing.

2.3 Quaternion Representation

In the following sections, the set of camera parameters to be estimated is
expressed as the vector p. It consists of the camera extrinsic parameters, that
is, the camera position and the camera orientation. In general, it is convenient
to represent them as the set of the camera rotation matrix and the camera trans-
lation vector, 〈R, t〉.

However, representing a rotation as the matrix form, R, causes a great diffi-
culty in the computation of the optimal rotation. While a rotation in 3D space
has only three degrees of freedom, a rotation matrix has nine degrees. This
restricts the values of R in a non-linear way as follows:

RRT = I (13.6)

|R| = 1 (13.7)

R must always satisfy these constraints to represent a rotation and this makes
difficult to take advantage of the linear matrix form of rotation.

The generally accepted alternative for the representation of rotation is the
use of quaternion. A quaternion is a 4-vector, consisting of a 3-vector
(u, v, w)T and a scalar s, that is, q = (u, v, w, s)T and it can represent an
arbitrary rotation in the 3D space. It has several useful characteristics.

The constraint of rotation is easily maintained by standard vector nor-
malization.

The inverse rotation is obtained by simply negating first 3 components
of the quaternion vector.

It can avoid the gimbal lock problem. Roughly speaking, the continuous
change of the elements always lead to the smooth change of rotation,
and vice versa.

The intermediate rotation between two quaternions can be calculated
linearly.

With the quaternion representation, the rotation between two sets of
corresponding 3D points can be solved in closed form.
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In addition, another important advantage of the quaternion representation is
utilized in Section 3.7

Thus, the following vector is used to express the camera parameters:

p = (qT tT )T (13.8)

where p is a 7-vector, q is a quaternion representing a camera rotation, and t is
a 3-vector representing a camera translation. If necessary, the form of rotation
matrix is also used and the rotation matrix corresponding to q is denoted by
R(q).

3. 2D-3D Registration Algorithm

In this section, the registration method which optimizes the camera position
and orientation of a 2D texture image with respect to the 3D geometric models,
is described. It is accomplished through the iterative algorithms. In each stage,
corresponding 2D-3D point pairs are automatically searched and the estimated
camera parameters are updated. In addition, the robust estimation framework
is used to eliminate the unfavorable effects of outliers.

3.1 Outline of 2D-3D Registration

Nowadays, we can capture the precise 3D geometric models through sens-
ing the real world objects. In addition, 2D photographic images of those ob-
jects can be easily obtained with digital cameras. The 2D-3D registration
shown in this chapter is the problem to estimate the camera positions and ori-
entations from which the photograph is taken, and to make the correspondence
between 3D geometries and 2D photometric attributes (colors, etc.). The cam-
era parameters consist of the camera rotation and translation and are written
as p = (qT , tT )T .

To align the 2D image with the 3D model, the edge features of the 2D image
and the edge features of the 3D model are considered. The outline of the
registration algorithm is shown in Figure 13.2. The “edgel” refers to the

edge element (cf. pixel as the picture element). First, 2D edgels and 3D
edgels are extracted from the 2D image and the 3D geometric model. Next,
their correspondences are automatically searched and then, camera parameters
are adjusted to minimize their distances. After that, the new 3D edgels are

detected using the newly estimated camera parameters and the above processes
are repeated iteratively.

Note that in this 2D-3D registration algorithm the 3D geometric model is
not necessarily restricted to the one object. We can assume many objects as
long as they provide the 3D edgels, so this method is applicable to the outdoor
environment, too. However, in the presence of multiple objects, especially
when they are located at the different distances, the small change of camera
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Figure 13.2. Outline of the 2D-3D registration algorithm

parameters is likely to cause the large separate movements of objects. There-
fore, the algorithm is supposed to be not so robust compared to the environment
of the indoor experiments, and the importance of initial position specification
grows.

3.2 2D Edgels

The detection of 2D edgels from the 2D photographic image is a very im-
portant stage in the registration algorithm. To achieve the stable and robust
registration, well-structured edges are crucial. If the edges are too scattered

and dense, the mismatch rate of 2D-3D correspondences will expand. Simple
edge detection methods such as the Sobel operator is likely to cause such noisy
edges. In out experiment, we use the Canny edge detector [3]. The example
of texture image and the result of 2D edge detection are shown in Figure 13.3.
Each edge pixel drawn as the black pixels in Figure 13.3(b) constructs the 2D
edgel. Note that 2D edgels do not change throughout the whole registration
process and they are detected only once.



248 DIGITALLY ARCHIVING CULTURAL OBJECTS

(a) (b)

Figure 13.3. Result of the 2D edge detection: (a) original 2D photographic image, (b) edge
image of (a). Each black pixel on (b) constructs the 2D edgel.

3.3 3D Edgels

Since the appearance of the 3D geometric models changes as the estimated
camera viewpoint changes, the 3D edgels have to be detected at every iteration.
The desirable characteristics of the 3D edgels are

They should have the similar edge structures as the 2D edgels (similar-
ity).

They should contain sufficient details to register the image precisely,
while they should not have too much minor junks (density).

They should be robustly detected from various kinds of 3D models, e.g.,
the models might be noisy (robustness).

Considering these conditions, the three types of 3D edgels are proposed in this
chapter: occluding edgels, reflectance edgels, and rendered edgels (in Figure
13.4).

1 Occluding Edgels:
Occluding edgels are detected around the surfaces whose normal are

almost perpendicular to the viewing direction (in Figure 13.4(b)). They
are supposed to cause the distance gap and can be seen as the edge.
To reduce the effects of noise, surface normals are calculated by the
PCA (Principal Component Analysis) method around the neighboring
vertices. Although the occluding edgels can be detected robustly, they
are not likely to have much information to align details.

2 Reflectance Edgels:
Usually, in the process of measuring 3D geometric objects by using
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(a) (b)

(c) (d)

Figure 13.4. Example of the three types of 3D edgels: (a) original 3D geometric model, (b)
detected occluding edgels, (c) reflectance values of the laser range sensor and the edgels they
form, (d) edgels obtained by the rendering result.
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the laser range finder, the data concerning the reflectance ratio of the
laser are also obtained. Since the reflectance values have already corre-
sponded to the 3D geometries, it is reasonable to use these values for the
registration. The change of reflectance ratio results from the difference

of the surface material, which also causes the change of surface colors.
Therefore, the edges of the reflectance values are supposed to have the
similar structures as the edges of 2D photometric image and used as the
3D edgels (in Figure 13.4(c)).

3 Rendered Edgels:
Although occluding edgels do not have much information, reflectance

edgels have sufficient details and their combination works well. How-
ever, we cannot assume the 3D geometric data always contain the re-
flectance values. For example, if we use different kinds of laser range
finders at the same time, the consistent reflectance values cannot be ob-
tained. Such situation easily occurs in practice because we would need
various kinds of sensors such as the accurate one for neighborhood mea-
surement and the wide-angle one which covers the wide range of dis-
tance.

Therefore, an alternative method to detect detailed 3D edgels becomes
necessary. One possibility is to detect edgels using geometric features
such as the curvature of the surface. However, these methods are very
sensitive to noise and many undesirable junk edgels would be detected.
To overcome this problem, the rendered edgels are proposed here. In-
stead of detecting the features directly from the 3D geometric model,
edges are detected from the rendering result. In the rendering process,
the 3D surface is assumed to be Lambertian (no specular highlights) and
the smooth shading is executed, so that the unnecessary edges should
disappear. After the rendering result is obtained, the edgels are detected
by the Canny edge filter. As a result, the edge structures are supposed
to be similar to the one which results from the 2D edge detection, and
also they have enough density of edgels.

These three types of 3D edgels are used properly and in combination.

3.4 2D-3D Correspondence

After detecting both 2D edgels and 3D edgels, their correspondences are
searched. In advance, the visibility of 3D edgels has to be checked, because
only part of the 3D edgels can be observed from the camera viewpoint of the
2D image. This visibility checking stage utilizes the z-buffer resulting from
the rendering process. Each 3D edgel is transformed to the camera-centered
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coordinate and if it is located within some threshold range from the z-value, it
is marked as visible.

Then, each visible 3D edgel is projected to the 2D image coordinate using
the currently estimated camera parameters. The nearest 2D edgel is searched
according to the 2D Euclidean distance and the pairs of 2D-3D edgels are
established.

3.5 Error Metric of Corresponding 2D-3D Pairs

Given a set of N corresponding points 〈x i, yi〉, where i = 0, ..., N − 1
and xi is a 3D edgel and yi is a 2D edgel, the registration problem is to
compute the camera parameters p, i.e., the camera rotation and translation
〈R, t〉, which aligns the projections of 3D edgels x i with 2D edgels yi. The
projection of xi is written as

ui = P
(

R t
0T 1

) (
xi
1

)
(13.9)
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where P is a 3× 4 projection matrix, and Ui is the coordinate of the projected
point on the 2D image.

To facilitate further analysis, several assumptions are made in the following
equations: the focal length is unity, the principal point lies exactly at (0, 0) on
the image, the aspect ratio is unity and the skew is zero. These assumptions
can be done without loss of generality. Thus, the projection equation 13.9 is
simplified to

ui = Rxi + t (13.11)
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One way of defining the error metric of corresponding 2D-3D point pairs is
the squared distance on the 2D image.

zi = ‖Ui − yi‖2 (13.13)

However, it does not take the distance to the 3D point x i into account, and it
only accounts for the direction of the 3D point. Consequently, it would favor
parts of the 3D edgels that are closer to the camera.
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Instead of using a 2D error metric, a similar 3D error metric can be consid-
ered. It can be expressed as the distance between a 3D edge point and a line
connecting the focal point to a 2D edge point. Figure 13.5 shows an example
of such a point and a line. Let v̂i be the unit vector of that line, i.e., the viewing
direction to a 2D edge point y i from the focal point. Now we can determine
the closest point on that line to the 3D edge point u i (xi is transformed into u
for the camera-centered coordinates).

y′
i = (ui · v̂i) v̂i (13.14)

Subsequently, the error zi is expressed as follows.

zi = ‖ui − y′
i‖2 (13.15)

This error computation is now in 3D rather than 2D.

image plane

focal point

3D edgels

projected edgels

2D edgels

u vx

U
y

y'

v̂

z

Figure 13.5. The error metric of corresponding 2D-3D edgels in 3D space. The 3D euclidean
distance between the 3D edgel u and the line stretching to the 2D edgel y is used for the error
metric.

3.6 Robust Estimation

In the registration process, the camera position and orientation are updated
toward the direction which reduces the sum of corresponding 2D-3D errors.

E(p) =
∑
i

zi(p) (13.16)
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=
∑
i

‖ui − y′
i‖2 (13.17)

where p is the camera extrinsic parameters that we want to estimate, andE(p)
is the evaluation function. This form of the equation 13.17 represents the least
squares estimation of parameters p.

However, it is not practical to use the above formulation directly since the
least squares method is very sensitive to the outliers and the estimated param-
eters tend to be strongly biased by them. This is because the least squares
method is the maximum-likelihood estimator which assumes that the errors
are distributed according to the normal distribution function. In the problems
of computer vision, there exist much more outliers which can have fractionally
large departures than expected in the normal distribution. Furthermore, much
worse situation is expected in this case. Since the corresponding point pairs
are automatically searched, a large part of them is supposed to be incorrectly
matched, especially in the initial stage of registration.

Outlier thresholding is the simplest and commonly used technique to re-
move outliers. It regards the data values outside some range as outliers and
simply eliminates those data points. The range is often determined by estimat-
ing the standard deviation σ of the errors in data and the value kσ is used for
thresholding, where k is typically greater than or equal to 3. Although it is
computationally easy and cheap, there are significant problems. One problem
is that the hard threshold is used to eliminate the outliers. This means, regard-
less of where the threshold is chosen, some of the valid data are rejected as the
outliers and some of the outliers are classified as valid. In addition, the hard
threshold makes the objective function discontinuous and causes the difficul-
ties for the numerical optimization. The other problem is that in our case the
initial correspondences are supposed to be highly incorrect. Therefore, both
valid data and incorrect data may exist in the same range and distinguishing
them may be meaningless.

To deal with outliers, various sorts of robust statistical estimators have been
studied. The two representative classes of robust estimation are the least-
median-of-squares (LMedS) method and the M-estimation.

The former class, LMedS method estimates the parameters by solving the
following non-linear minimization problem.

E(p) = medi zi(p) (13.18)

p = argmin
p
E(p) (13.19)

The concept of LMedS is to select the median value of the errors for each
observation and use that value as the error value at the current parameters. The
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logic behind this is that the median is almost guaranteed not to be an outlier as
long as half of the data is valid. Essentially, this requires an exhaustive search
of possible values p, by testing least-squares estimates of p for all possible
combinations of matches between 2D-3D edgels. Although this median based
technique can be very robust, its computation cost is extremely high.

The M-estimation is another representative method for robust estimation
and it is used in this thesis. The “M” refers to maximum-likelihood estimation
and the arbitrary error model can be used. Assuming that each error zi is
independently random and it is observed according to the probability density
P,

P =
∏
i

e ρ(zi) (13.20)

the maximum-likelihood parameters can be obtained by minimizing the fol-
lowing objective function,

E =
∑
i

ρ(zi) (13.21)

where ρ(z) = − logP (z).
For example, assuming that the errors zi follow the normal distribution, they

are written as follows.

P ∝
∏
i

e−z
2
i , ρ(z) = z2

i (13.22)

E =
∑
i

z2
i (13.23)

Notice that this is equivalent to the least-squares formulation.
Using the framework of M-estimation, our evaluation function (Equation

13.16) can be modified to

E(p) =
∑
i

ρ(zi(p)) (13.24)

By taking the derivative of E with respect to p and setting it to 0, the parame-
ters p that minimize E can be obtained.

∂E

∂p
=

∑
i

∂ρ

∂zi
· ∂zi
∂p

= 0 (13.25)

By substituting

w(z) =
1
z

∂ρ

∂z
(13.26)

we get
∂E

∂p
=

∑
i

w(zi) zi
∂zi
∂p

= 0 (13.27)
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If we temporarily forget that w is a function of z, this can be interpreted as
weighted-least squares minimization, which has the form ρ(z) = w z 2. In
other words, the term w(z) represents the weight of contribution of errors of
magnitude z with respect to a weighted-least squares estimate.

There are many possible choices of ρ(z) to reduce the sensitivity to outliers
on the estimation. The famous functions are: Lorentz’s, Tukey’s, Andrew’s,
Huber’s and the sigmoid function. Among them, the Lorentzian function is
used in the current implementation.

In the weighted-least squares sense, the behavior of M-estimation func-
tion can be intuitively understood by analyzing the weight function w(z). The
Figure 13.6(a) shows the graph of weight functions. While the normal dis-
tribution (Gaussian function) has the constant weight value for all ranges of
data, the Lorentzian function discounts observations with large errors, which
makes this function more robust against outliers. For comparison, the simple
thresholding method is also tested, with the threshold value 3σ. Figure 13.6(b)
compares the error probability distribution functions. Both the Gaussian and
the Lorentzian function look similar around the center, however, the Gaussian
function hardly allow large errors, in particular the errors larger than 3σ. For
this reason, the least-squares estimate which assumes the Gaussian distribution
does not work correctly in the presence of such outliers.
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Figure 13.6. Plots of weight and probability distribution functions. (a) shows the weight func-
tions. While the Lorentzian function discounts observations with large errors, the Gaussian
function always weighs constantly. The thresholding method is also drawn for comparison,
with the threshold value 3σ. (b) compares the error probability distribution. They look similar
around the center, however, the Gaussian function hardly allow the errors which are larger than
3σ.

3.7 Iterative Refinement of Camera Parameters

Now, we review the registration problem in detail. Given a set of N cor-
responding point pairs 〈x i, yi〉, where i = 0, ..., N − 1 and xi is a 3D edgel
point and yi is a 2D edgel point, the objective function to be minimized can
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Function Name ρ(z) w(z)

Gaussian ρ(z) = z2 w(z) = 1

Lorentzian ρ(z) = log
(
1 + 1

2
z2
)

w(z) = 1
1+ 1

2 z2

Thresholding ρ(z) =

{
z |z| ≤ θ
0 |z| > θ

w(z) =

{
1 |z| ≤ θ
0 |z| > θ

Table 13.1. Comparison of weight functions. θ in the row “Thresholding” is the threshold
value.

be written as follows:

E(p) =
1
N

N∑
i

ρ(zi(p)) (13.28)

where zi(p) = ‖ui − y′
i‖2 (13.29)

ρ(z) is the M-estimate function, the Lorentzian function in this case, and the
parameters p is a 7-vector which denotes the camera rotation and translation
(qT tT )T . Both ui and y′

i are the function of p and they are shown in Equation
13.11 and 13.14. The normalization factor 1/N is introduced to take the aver-
age distance of corresponding point pairs, since the number of them changes
through the iterative process by the automatic generation and visibility check
of 3D edgels.

The difficulty in minimizing E(p) is that the 2D edgel y i corresponding
to the 3D edgel xi is also the function of p, that is, the movement of p may
cause the change of their correspondences. Although ignoring this fact can
lead to inefficiency and possibility of incorrect results, it seems impossible to
take these effects into account in the above mathematical formulation.

To overcome this problem, iterative minimization processes are used. In
each iterative process, the current correspondences are searched using the cur-
rent camera parameters. Within each minimization calculation, they are re-
garded as fixed and the better camera parameters are estimated under such
constraints. It starts with a crude set of correspondences and gradually con-
verge to the correct correspondences and at the same time finds the true camera
parameters. An improvement in E(p) should correspond to an improvement
in p, and that leads to an improvement in the correspondences as well.

Each minimization calculation is accomplished by the conjugate gradient
search. Other non-linear optimization methods, such as the Levenberg-
Marquardt method, can also be used.
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To use these non-linear optimization methods, the gradient of the objective
functionE with respect to the camera parameters p must be computed:

∂E

∂p
=

1
N

N∑
i

w(zi)zi
∂zi
∂p

(13.30)

In particular,
∂zi
∂p

=
∂ui
∂p

∂zi
∂ui

(13.31)

The former component, ∂ui
∂p , is the Jacobi matrix of the camera coordinates

with respect to the camera parameters. The latter component, ∂zi
∂ui

, tells us
how we must move ui, the camera-centered coordinates of xi, to reduce zi.

First, the former component, ∂ui
∂p , is inspected in detail.

ui(p) = R(q)xi + t (13.32)

The difficult point is the differentiation of R(q)x with respect to the rotation
quaternion q. To simplify the computation, we pre-rotate the model points so
that the current quaternion is qI = (0, 0, 0, 1)T , i.e., the unit quaternion. It
has the property R(qI) = I and considering the gradient around it depends on
the fact that this becomes the very simple form:

∂Rx
∂q

∣∣∣∣
qI

x = 2C(x)T (13.33)

where C(x) is the 3 × 3 skew-symmetric matrix of the vector x. The skew-
symmetric matrix is defined as follows.

x× a = C(x) a =

⎛
⎝ 0 −z y

z 0 −x
−y x 0

⎞
⎠ a (13.34)

where x = (x, y, z)T . In other words, the cross product of the vector x is
equivalent to the multiplication of its skew-symmetric matrix C(x). Notice
that, by the skew-symmetry of C(x), CT = −C. Therefore,

∂ui
∂p

a =
[

a
2C(xi)Ta

]
(13.35)

can be obtained.

Next, the differentiation of zi by ui is derived. From Equation 13.29,

∂zi
∂ui

=
(
I− ∂y′

i

∂ui

){
2(ui − y′

i)
}

(13.36)
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where

∂y′
i

∂ui
=

∂(ui · v̂)v̂
∂ui

(13.37)

=
∂(v̂Tui)v̂
∂ui

(13.38)

= v̂v̂T (13.39)

Since y′
i is on the line stretched from the 3D point u i and that line is perpen-

dicular to the viewing direction v̂,

(ui − y′
i) · v̂ = 0 (13.40)

Consequently, we get

∂zi
∂ui

= I
{
2(ui − y′

i)
}

(13.41)

= 2(ui − y′
i) (13.42)

Finally, from Equation 13.31, 13.35 and 13.42, the derivative of z i with
respect to the camera parameters p can be obtained.

∂zi
∂p

=
∂ui
∂p

∂zi
∂ui

(13.43)

=
{
∂(R(q)xi + t)

∂p

}{
2(ui − y′

i)
}

(13.44)

=
[

2(ui − y′
i)

4C(xi)T (ui − y′
i)

]
(13.45)

=
[

2(ui − y′
i)

−4xi × (ui − y′
i)

]
(13.46)

Now, we can compute the gradient of E and the minimization calculation can
be executed by the conjugate gradient search.

4. Simultaneous Registration Algorithm

In the previous section, the registration method which aligns one 2D im-
age and estimates the single viewpoint against the 3D geometric models, is
described. In this section, multiple 2D images are taken into account and mul-
tiple viewpoints are simultaneously estimated.
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4.1 Illustration of Simultaneous Registration

Since one photographic image taken from one viewing point is a partial
view of the model, multiple images must be measured to cover the entire 3D
geometric models. To obtain the whole texture-mapped model, the apparent
approach is to sequentially align each 2D image with the 3D geometric model
using the 2D-3D registration technique mentioned in the previous Chapter.

However, it may cause undesirable artifacts around the boundary where tex-
ture images from different views intersect, since there would be a gap between
two adjacent texture images. Figure 13.7 shows the example. After registering
two images separately, aligned 2D edgels are projected onto the 3D surface.
We can observe lots of gaps between the edge projected from one texture im-
age and the one projected from another texture image. These gaps lead to the
discontinuity at the boundary switching from one texture image to another and
result in the visual artifacts.

Figure 13.7. Example of the gap between two adjacent texture images. Adjacent 2D image
edges which are already aligned by the single-viewpoint 2D-3D registration, are projected onto
the 3D surface. (b) is a zoomed view of (a).

These gaps result from the fact that even if each 2D image is thoroughly
registered to the 3D object in the error metric of respective viewpoint, it does
not necessarily mean it is globally optimal. Due to various errors such as the
inaccuracy of 3D geometry, the resolution of pixels, irremovable lens distor-
tions, etc., it is impossible to seek exactly correct registration. Accordingly,
we have to assume errors always exist and they need to be distributed globally.
Otherwise, if they are minimized only in terms of the single-viewpoint regis-
tration, each adjacent image is aligned toward the different kind of objective
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function and it results in the gaps between adjacent images. Therefore, the
multi-view global optimization is necessary which registers multiple images
simultaneously.

The simultaneous registration method has the other good point, too. In Sec-
tion 3.3, the topic of density and similarity of edge features was mentioned.
The occluding edgels have less features than other kinds of edgels and the re-
flectance and rendered edgels might have different edge structures compared
to the photometric edges. In the global registration, the gaps seen in Figure
13.7 are optimized, i.e., the 2D edgels from adjacent images are taken into ac-
count. These features have highly similar structures in the photographs taken
from neighboring viewpoints, and also, they contain sufficient details. Conse-
quently, the global registration process utilizing these features is supposed to
lead to more accurate and detailed registration results.

4.2 Interactive Error Term

To minimize gaps shown in the previous section, the interactive term is in-
troduced into the objective function E(p):

E(t)(p(t)) = E
(t)
single(p

(t)) +E
(t)
interactive(p

(t)) (13.47)

Since there are multiple 2D photographic images and multiple camera param-
eters to estimate in the simultaneous registration problem, the upper script (t)
is used to denote that the value is related to t-th 2D image. The above formula
represents that the evaluation function with respect to t-th image, E (t)(p(t)),
comprises two parts, i.e., the term regarding the single-viewpoint registration
and the term considering the interaction among neighboring images.

The former term is the same as the one shown in Equation 13.28 and can be
expressed as follows.

E
(t)
single(p

(t)) =
1

N (t)

∑
i

ρ(z(t)
i (p(t))) (13.48)

It is slightly rewritten to distinguish multiple viewpoints, that is, the script (t)
are added. z(t)

i (p(t)) is the distance between i-th visible 3D edgel in the 3D
geometric model and the corresponding 2D edgel on the t-th image at the
camera parameter p(t). The normalization factor 1/N (t) is presented to obtain
the average distance of corresponding points, since the number of them change
through the iterative process by the automatic detection and visibility check of
3D edgels.

In addition to the term concerning the single-viewpoint registration, the
interactive term which aligns the edgels among neighboring images is intro-
duced in the simultaneous registration. It minimizes the distances of newly
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generated 3D edgels on the 3D surface. These processes are explained below
and illustrated in Figure 13.8.

t-th image
neighboring image neighboring image

projection projection

3D geometric model

projection

Figure 13.8. Projecting 2D edgels from neighboring images onto the 3D surface. These pro-
jected 2D edgels compose the new 3D edgels and they are aligned on the 3D surface.

1 After each image is registered to the 3D geometric model, its 2D edgels
are projected onto the surface of the 3D geometric model.

2 Subsequently, they form the new sets of 3D edgels.

* We now consider the objective function concerning the t-th image.

3 The sets generated from neighboring images are chosen.

4 Among them, the edgels which are not visible from t-th viewpoint are
removed.

5 Visible neighboring edgels are registered with the edgels projected from
t-th image, that is, t-th viewpoint is modified to make them agree on the
3D surface.

Note that at the projection stage, only the edgels projected onto the smooth
gradual surface are used, i.e., edgels projected onto the discontinuous surface
or onto the steep slope are eliminated.
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Figure 13.9. Error metric of corresponding edgel pairs on the 3D surface

The error metric of corresponding edgel pairs on the 3D surface is illus-
trated in Figure 13.9; u is the novel 3D edgel projected from the neighboring
image, y is its corresponding 2D edgel on the t-th image, and v̂ is the viewing
direction. These formulations are constructed to imitate the normal 2D-3D
registration. In the 2D-3D error metric, the distance z between the 3D edgel
u and the line connecting from the focal point to the 2D edgel y is con-

sidered and minimized. On the other hand, in simultaneous registration, the
distance between projected edgels along the 3D surface is minimized. Let
y′′ be the projected point of the 2D edgel on the t-th image. Here, we can
assume that the distance of corresponding edgel pairs along the 3D surface is
approximated by the Euclidean distance between u and y ′′. This is because
the projected edgels exist on the smooth surface and their neighborhood can
be approximated by the tangential plane. Consequently, the error metric for
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the interactive term can be written as follows:

z′i =
zi

sin θi
(13.49)

where θ is the angle between the viewing direction and the tangential plane.
Assuming that θ is fixed in one iteration step, z ′

i and its gradient ∂z ′i/∂p
are almost the same as the 2D-3D registration case. Therefore, this mu-
tual registration algorithm can take advantage of the similar framework of the
single-viewpoint registration between 3D edgels and 2D edgels.

Now, the formula of the interactive term is shown below.

E
(t)
interactive(p

(t)) =
1

N ′(t)
∑

s∈U (t)

∑
i

ρ(z′(t,s)i (p(t))) (13.50)

U(t) denotes the set of neighboring images of t-th image. Among them, s-

th image is chosen and z ′(t,s)i (p(t)) is the distance of i-th edgel pair which
comprises the edgels projected from t-th image and the edgels projected from
s-th image.

Thus, the objective function regarding the t-th camera parameter p(t) is
constructed to meet both the 3D edgels from 3D geometric model and the
edgels projected from neighboring images.

4.3 Iterative and Simultaneous Refinement

In the global registration problem, we have to estimate N sets of camera
parameters p(i) (0 ≤ i ≤ N − 1). First of all, separate single-viewpoint
registrations need to be accomplished to approximately align all images. After
that, simultaneous refinement process starts and it is also achieved by the
iterative calculations.

The outline of the simultaneous refinement algorithm is described in Figure
13.10. Since it takes advantage of the similarity to the single-viewpoint regis-
tration, there are not so many differences. However, some points are described
in detail below.

1 For each iterative step, 2D texture edgels are projected onto the 3D
surface using their current camera parameters and they form the new
temporal 3D edgels. At this projection stage, uncertain edgels which
are projected to a steep surface or around occluding boundaries should
be removed.

2 The t-th objective function consists of the single-viewpoint term and
the interactive term. The latter considers the differences of projected
edgels on the 3D surface. It minimizes the distance between the edgels
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projected from t-th image and the edgels projected from neighboring
images on the 3D surface.

3 By minimizing the t-th objective function, the update of t-th camera
parameters is estimated. Minimization is executed by the conjugate
gradient search.

4 The estimated update of t-th camera parameters is “not” applied at this
point. Instead, it is recorded in the update list.

5 After all objective functions are minimized and all camera updates are
estimated, they are finally applied to the sets of camera parameters.

6 The above loops are repeated until the objective functions converge.

Note that the camera parameters are not transformed immediately. Consid-
ering that the changes of camera parameters caused by each step will not be
so large, this latency of propagation will not cause a problem. The strategy of
updating every camera parameters at once is not taken because the order of
processing texture images matters in that case, and further, it requires dupli-
cated calculations of projecting 2D edgels.

5. Experiments and Results

5.1 Implementation Details

Rough and detailed registration:
In the experiment, the single-viewpoint registration was divided into two
separate stages: the rough registration stage and the detailed registration
stage. At first, only the occluding edgels are used so that the rough
position can be easily aligned without the interference of small edge
structures. After that, the reflectance edgels (if available) or the rendered
edgels are also considered to align the detailed structures.

Each 2D image is registered separately as described above. Finally, the
all images are simultaneously registered by the global optimization.

σ of the Lorentzian function:
In the M-estimation framework, the argument of the Lorentzian func-
tion must be the normalized value with respect to the proper standard
deviation σ. Otherwise, reduction of outliers might be too weak or too
strong. Therefore, σ is always updated by analyzing the distribution of
corresponding 2D-3D errors. Every time the 2D-3D correspondences
are updated, their lower quartile error is chosen as σ. Since lower quar-
tile contains the smallest values, proper σ will be chosen as long as the
quarter of the correspondences are correct.
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Selection of the neighboring images:
In the simultaneous registration, 2D edgels are projected onto the 3D
surface and they are registered among the neighboring images. In the ex-
periment, only two adjacent images, i.e., the left and the right neighbors,
are used as the neighborhood since the texture images are captured on
the circular position surrounding the target object. However, in practice,
the neighborhood within some range should be automatically chosen.

Selection of the texture image:
For each mesh, the texture image which minimizes the inner product of
the mesh normal and the viewing direction, is chosen. To avoid too much
fragmentation, the mesh normal is averaged around the neighborhood.

5.2 Results

Proposed registration method is applied to a plastic bear object (In Fig-
ure 13.11). Range images are measured with a Minolta VIVID 900, and the
3D geometric model has been constructed using these alignment and merg-
ing methods [21, 25]. The obtained geometry has 31300 vertices and 62277
meshes. 2D photographic images are taken with a NIKON D1x digital camera
which yields an image of 3008x1960 resolution. Lens distortions are elim-
inated using the camera calibration method [36], and at the same time, the
camera focal length is also obtained. Other camera intrinsic parameters are
assumed to be idealized value, i.e., the principal point is (0, 0), the aspect ratio
is unity and the skew is zero. Registration calculations are carried out on the
PC which has the AMD Athlon processor of 1400MHz and 512MB memory.

To begin with, the single-viewpoint 2D-3D registration method is exam-
ined. Figure 13.12 shows detected 2D and 3D edgels. In this experiment,
the occluding edgels and the rendered edgels are used as the 3D edgels. The
process of the iterative calculation is illustrated in Figure 13.13. The camera
extrinsic parameters have been refined to align corresponding 2D edgels and
3D edgels and the proper camera viewpoint is estimated. This registration
took approximately 30 seconds. More than half of them is consumed in the
process of the 2D edge detection using Canny method which is executed sev-
eral times to obtain 3D rendered edgels. Other time consuming processes are:
the rendering process of 3D geometries using OpenGL which is necessary to
obtain the z-buffer for visibility checking, and the calculation of the objective
function which is evaluated many times in the conjugate gradient search.

Thus, 11 photographs taken from different viewpoints can be separately reg-
istered to the 3D geometric model. However, the set of images which are
registered separately is not necessarily consistent around the boundary where
images from different views intersect. Since there always remain some reg-
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istration errors due to the inaccuracy of 3D geometries, irremovable lens dis-
tortions, incorrect camera intrinsic parameters, etc., the perfectly correct
registration cannot be achieved, and such errors must be distributed globally.
Therefore, the simultaneous registration is applied after the separate single-
viewpoint registrations, and the effects are examined. 2D edgels of two ad-
jacent texture images are projected onto the 3D surface and their gaps before
and after the simultaneous refinement are compared in Figure 13.14. Here, we
can see that these gaps undoubtedly shrank, thanks to the simultaneous regis-
tration. For this simultaneous refinement, 20 iterations were necessary and it
took roughly 10 minutes.

In the simultaneous registration, the objective function consists of two parts,
i.e., the single-viewpoint error terms relating to the separate 2D-3D registra-
tion and the interactive error terms concerning the global errors.

E(p) = Esingle(p) + Einteractive(p) (13.51)

The behavior of these two kinds of components is examined in Figure 13.15.
This graph contains two experiments: one is the separate single-viewpoint
registration of 40 iterations, and the other is also the single-viewpoint reg-
istration for first 20 iterations but the simultaneous registration follows for
successive 20 iterations. Although the interactive error terms do not exist in
the single-viewpoint registration, they are temporarily evaluated at each itera-
tion to observe the global errors. While the first half of the plots are exactly the
same, we can observe the interesting difference after the simultaneous regis-
tration starts in one experiment. It is plainly seen in the zoomed views around
the simultaneous registration (in Figure 13.16). Although the single-viewpoint
registration reduces the single error terms slightly better than the simultaneous
registration, the interactive errors do not necessarily decrease. Indeed, further
single-viewpoint registration tries to reduce the single error terms too much at
the expense of the global errors.

The quality of the texture-mapped object is also compared in Figure 13.17.
Since the registration errors are absorbed globally, visual artifacts are reduced
in simultaneously registered results. However, when examined carefully, there
still remain some defects and we can consider two major reasons: registration
errors and color inconsistency. The former means that although the simulta-
neous registration distributes errors globally, there should remain excessive
errors. The latter is the more serious problem. Even if the images are per-
fectly aligned, there might exist the color gaps between adjacent images. This
is because the observed color in the photograph changes due to various fac-
tors: illumination conditions, viewing positions, specular highlights, etc. Note
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that, to avoid such problems, many researches concerning the texture mapping
adopt the blending strategy of textures from neighboring images.

Recently, our laboratory has been conducting the project of creating digi-
tal cultural assets through observation, and the precise 3D geometric models
of such objects have been constructed using accurate laser scanners [18, 21,
25, 26]. Thus, the proposed registration method is applied to one of them,
the Great Buddha of Kamakura (in Figure 13.18(a)) and its texture-mapped
model is created. The Great Buddha of Kamakura is a 13m tall statue sitting in
an open air. It was scanned using a Cyrax 2400 sensor and the fine geometric
model has been reconstructed, which has approximately 0.7 million vertices
and 1.3 million meshes (in Figure 13.18(b)). Since registering 2D images to
such high resolutional data requires massive computational time, the simpli-
fied model was used, which has approximately 100 thousand vertices and 200
thousand meshes.

18 photographs are taken with D1x digital camera and they are registered
to the geometric model. Results of the textured model are shown in Figure
13.19. Although the registration process is almost the same as the previous
bear example, reconstructed Great Buddha has several visual artifacts. This
is because there exist excess difficulties in this case due to the outdoor envi-
ronment and the size of the object. First, the illumination condition should
easily change in the outdoor environment. Although all measurements of pho-
tographs are carried out within only a few minutes, the observed colors are
slightly changed. This would be caused by the imperceptible movement of the
sun and the clouds. Second, a 17mm wide lens was necessary to capture the
unoccluded whole image of the Great Buddha. The wide lens leads to larger
lens distortions particularly in the periphery of the image, and indeed, the cam-
era calibration could not remove part of the distortions around the leg of the
Great Buddha (in Figure 13.18(a)). As a result, the simultaneous registration
did not perform well especially in the lower half of the Great Buddha and this
leads to the alignment gaps around that region.

6. Conclusions

6.1 Summary

In this chapter, a novel registration method is introduced and described,
which automatically and simultaneously aligns multiple 2D images onto 3D
geometric models. Usually, corresponding features between the 2D image and
the 3D model have to be specified to estimate the camera position and ori-
entation. However, in the proposed method, the correspondence information
between 2D edge pixels and 3D edge points are automatically searched and
updated throughout the iterative calculations. Considering the robustness and
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the density of edge features, three types of 3D edge features are proposed and
used in combination. Further, the global optimization among all the 2D images
is also achieved by the simultaneous registration which considers the 2D-2D
edge correspondences on 3D surfaces. To make the algorithm robust against
the outliers, the framework of M-estimates is employed. Registration results
are examined with the texture mapped objects and the meaningful importance
of the simultaneous registration is presented. Also, this method is applied to
the creation of digital cultural assets and the issues concerning the measure-
ment in large-scale outdoor environments are revealed.

6.2 Future Work

To achieve accurate texture mapping, lens distortions must be removed.
Therefore, the practical camera calibration is needed, which can be easily per-
formed at the measurement time even in the large-scale outdoor environments.

To improve the quality of texture-mapped objects, the intrinsic color of the
object surface must be estimated. Since the observed texture image contains
various factors at the measurement time: illumination conditions, shadows,
specular highlights, etc., the colors of the corresponding points from different
viewpoints are not consistent. Therefore, in order to reconstruct the precise 3D
models, such factors must be canceled out and the intrinsic color of the surface
needs to be estimated.
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// separate single-viewpoint registration stage

foreach t in AllTextureImages {

do {

Model3DEdgel[t] = GetVisibleEdgel(GeometricModel, Camera[t]);

PointPairs = [];

foreach i in PointsOf(Model3DEdgel[t])

PointPairs += CorrespondenceSearch(i, Texture2DEdgel[t]);

UpdateList[t] = EstimateCameraUpdate(PointPairs);

TransformSingle(Camera[t], UpdateList[t]);

} until converge

}

// simultaneous registration stage

do {

foreach t in AllTextureImages {

Model3DEdgel[t] = GetVisibleEdgel(GeometricModel, Camera[t]);

Projected3DEdgel[t] = Project2DEdgel(GeometricModel, Camera[t], Texture2DEdgel[t]);

}

foreach t in AllTextureImages {

PointPairs = [];

PointPairs2 = [];

// single-viewpoint term

foreach i in PointsOf(Model3DEdgel[t])

PointPairs += CorrespondenceSearch(i, Texture2DEdgel[t]);

// interactive term

foreach s in NeighboringImages

foreach i in PointsOf(Projected3DEdgel[s])

PointPairs2 += CorrespondenceSearch(i, Texture2DEdgel[t]);

UpdateList[t] = EstimateCameraUpdate(PointPairs, PointPairs2);

}

// update all camera parameters at this point

TransformAll(Camera, UpdateList);

} until converge

Figure 13.10. Outline of simultaneous registration algorithm
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(a) (b)

Figure 13.11. Plastic bear object: (a) photographic image, (b) 3D geometric model.

(a) (b) (c)

Figure 13.12. Detected 2D and 3D edgels: (a) 2D edgels, (b) 3D occluding edgels, and (c) 3D
rendered edgels.

(a) (b) (c)

Figure 13.13. 2D-3D registration: (a) initial position, (b) after 8 iterations, and (c) after regis-
tration calculation. The 3D geometry and 3D edgels are overlaid on the photographic image; red
pixels are the 2D edgels, green pixels are the occluding edgels, and blue pixels are the rendered
edgels.
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Figure 13.14. Comparison of the alignment gap: 2D edgels of the two adjacent images are
projected onto the 3D surface. (a) Aligned using the separate single-viewpoint registrations. (b)
Aligned using the simultaneous registration. (c), (d) Zoomed views of (a) and (b), respectively.
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Figure 13.17. Comparison of the texture-mapped model: (a) Separate single-viewpoint regis-
trations. (b) Simultaneous registration. (c), (d), (e), (f) Zoomed views of the top images.
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(a) (b)

Figure 13.18. The Great Buddha of Kamakura: (a) a photograph taken with the 17mm wide
lens, (b) the high resolutional geometric model.

(a) (b)

Figure 13.19. Textured Great Buddha. (a) one image is mapped, (b) 18 images are mapped.



Chapter 14

CONSISTENT SURFACE COLOR FOR
TEXTURING LARGE OBJECTS IN OUTDOOR
SCENES

Rei Kawakami, Robby T. Tan, and Katsushi Ikeuchi

Abstract Color appearance of an object is significantly influenced by the color of the il-
lumination. When the illumination color changes, the color appearance of the
object will change accordingly, causing its appearance to be inconsistent. To ar-
rive at color constancy, we have developed a physics-based method of estimat-
ing and removing the illumination color. In this chapter, we focus on the use of
this method to deal with outdoor scenes, since very few physics-based methods
have successfully handled outdoor color constancy. Our method is principally
based on shadowed and non-shadowed regions. Previously researchers have dis-
covered that shadowed regions are illuminated by sky light, while non-shadowed
regions are illuminated by a combination of sky light and sunlight. Based on this
difference of illumination, we estimate the illumination colors (both the sunlight
and the sky light) and then remove them. To reliably estimate the illumination
colors in outdoor scenes, we include the analysis of noise, since the presence of
noise is inevitable in natural images. As a result, compared to existing methods,
the proposed method is more effective and robust in handling outdoor scenes.
In addition, the proposed method requires only a single input image, making it
useful for many applications of computer vision.

Figure 14.1. The texture of the Bayon Temple in Angkor, Cambodia. The color of the objects
varies due to the use of textures taken at different times.



280 DIGITALLY ARCHIVING CULTURAL OBJECTS

1. Introduction

Reflected light from an object is the product of surface spectral reflectance
and illumination spectral power distribution. Consequently, illumination color
significantly determines the object’s color appearance. When the illumination
color changes, the object color appearance changes accordingly. This leads
to many problems in algorithms of computer vision. For example, Figure 14.1
shows that the illumination change in creating a realistic model causes the color
appearance of an object to be inconsistent. Recovering the surface’s actual
color requires a method of color constancy that discounts the inconsistencies
caused by variations in illumination.

Color constancy is one important aspect of the field of computer vision.
Many algorithms in this field, such as color-based object recognition, image
retrieval, reflection component separation, and real object rendering, require
recovery of the actual color of objects. Many methods have been proposed
for this recovery [3, 9, 18, 5, 7, 11, 15, 16, 10, 12, 17]. Based on their input,
we can categorize these methods into dichromatic-based methods and diffuse-
based methods [17]. Dichromatic-based methods [5, 7, 11, 15, 16, 10, 17]
require the presence of highlighting, while diffuse-based methods [3, 9, 18]
require body-only reflection.

Most diffuse-based methods use a single input image of objects lit by a
uniformly colored surface. Usually these methods require strong constraints
in surface colors domain, such as a prior surface color database, and cannot
accurately estimate images with few surface colors [18]. A few researchers
alternatively introduce color constancy methods based on varying or changing
illumination color [4, 8, 2]. They have found that, despite creating the problem
of color constancy, the change of illuminations could be a crucial constraint to
solving the color constancy problem itself. D’Zmura [4] proposed a method
using approximated linear basis functions to form a closed-form equation. One
drawback of the method is that it fails to provide robust estimations for real im-
ages. Finlayson et al. [8] introduced a method that uses a single surface color
illuminated by two different illumination colors. Barnard et al. [2] utilized
the retinex algorithm [14] to automatically obtain a surface color with differ-
ent illumination colors, and then applied the method of Finlayson et al. [8] to
estimate varying illumination colors in a scene.

In this chapter, our goal is to estimate and to remove the illumination color
of outdoor scenes by using a single image. To accomplish this goal, we utilize
shadowed and non-shadowed regions. Previously researchers (for example,
[7]) have discovered that shadowed regions are illuminated by sky light, while
non-shadowed regions are illuminated by a combination of sky light and sun-
light. Note that sunlight is due to the direct rays from the sun, and sky light is
due to the scattered light rays from the atmosphere. Based on this difference
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of illumination in shadowed and non-shadowed regions, we have developed
a method to estimate the illumination colors (both the sunlight and the sky
light) and then remove them. To reliably estimate the illumination colors in
outdoor scenes, we include the analysis of noise, since the presence of noise is
inevitable in natural images, due to the sensors, the medium, or noise inherent
in the objects, such as dust and imperfect painting.

Our basic idea of using shadowed and non-shadowed regions is similar to
the idea of using varying illumination [8, 2], and our method is principally
based on a method proposed by Finlayson et al. [8]. However, unlike the
method of Finlayson et al., we take into account the presence of noise, which
is inevitable in real images. Finlayson et al. did not include noise in their
analyses, which makes their method unreliable for natural images, particularly
outdoor scenes. Moreover, instead of using a discrete illumination model, we
employ a continuous model that is computed from the Planck Formula.

To estimate the actual color of the surface successfully, we made the fol-
lowing assumptions: (1) The illumination chromaticity forms a straight line
in a two-dimensional inverse-chromaticity space. (2) The camera sensitivity
function is narrowband and known. (3) The output of camera response is linear
to the flux of incoming light intensity. The last two assumptions are common
assumptions used in many color constancy algorithms.

The rest of the chapter is organized as follows: in Section 2, we describe
image color formation and the definition of chromaticity. In Section 3, we dis-
cuss constraints used in our method. In Section 4, we introduce our approach
to make the estimation more robust and accurate. We provide the implemen-
tation of our approach and experimental results for real images in Section 5.
Finally, in Section 6, we conclude this chapter.

2. Reflection Model

Image Formation. According to general image formation, an image of a
diffuse object taken by a digital color camera can be described as:

Ic =
∫
Ω
S(λ)E(λ)qc(λ)dλ (14.1)

where Ic is the sensor response (RGB pixel values), S(λ) is the surface spectral
reflectance and E(λ) is the illumination spectral power distribution, q c is the
three-element vector of sensor sensitivity, and index c represents the type of
sensors (r, g and b). Integration is done over the visible spectrum (Ω). In this
model we ignore camera noise and gain. By assuming narrowband sensitivity
that follows the Dirac delta function, Equation (14.1) can be simply written as:

Ic = ScEc (14.2)
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where Sc = S(λc) and Ec = E(λc). If camera sensitivity cannot be approxi-
mated by the Dirac delta function (narrowband sensor), we could apply camera
sharpening algorithms proposed by [6, 1].

Chromaticity Following Finlayson et al. [8], in this chapter we define chro-
maticity (or specifically image chromaticity) as:

σc =
Ic
Ib

(14.3)

where index c = {r, g}. Equation (14.2) still holds in this chromaticity space:

σc = scec (14.4)

where sc and ec correspond to the chromaticities of Sc and Ec, which we call
surface and illumination chromaticity, respectively.

Planck Formula In this study, as in many existing color constancy methods,
we assume that natural (outdoor) illumination can be approximated by a black-
body radiator, which is modeled by the Planck formula.

The Planck formula is expressed as:

M(λ) = c1λ
−5[exp(c2/λT )− 1]−1 (14.5)

where c1 = 3.7418× 10−16 Wm2, c2 = 1.4388× 10−2 mK, λ is wavelength
(m), and T is temperature in Kelvin. By combining with known sensor sensi-
tivity, we can obtain a camera response of the Planck formula:

Ic =
∫
Ω
M(λ, T )qc(λ)dλ (14.6)

The last equation is the combination of image formation and the Planck for-
mula.

3. Estimating Surface Chromaticity

From Equation (14.4), the problem of color constancy can be described as
the problem of estimating the values of ec and sc given the value of σc, where
index is c = {r, g}. However, to estimate four unknown values (e r, eg, sr, sg)
from two known values (σr, σg) is mathematically ill-posed. To solve the prob-
lem, we should add more constraints, which we do in this chapter by increasing
the number of the image chromaticities: σ1

c and σ2
c that are taken from the same

surface chromaticity (sc) but different illumination chromaticities (e c):

σ1
c = sce

1
c (14.7)

σ2
c = sce

2
c (14.8)
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From the last two equations, we can have four knowns (σ 1
r , σ

1
g , σ

2
r , σ

2
g), and six

unknowns (sr, sg, e1r, e
1
g, e

2
r , e

2
g), which is mathematically still ill-posed.

Fortunately, from Section 2, we know that natural (outdoor) illumination
can be approximately modeled by the Planck formula, implying that by using
the formula we can have the correlation of eir and eig, namely, eig = f(eir)
where f is a function derived from the Planck formula and index i = {1, 2}.
As a result, we can have four unknowns: (sr , sg, e1r, e

2
r), and thus the problem

has the possibility to be well-posed. In the subsequent section, we will discuss
the correlation of eg and er, and then explain how we can automatically have
two image chromaticities with the same surface chromaticity but different
illumination chromaticity (pixels from shadowed and non-shadowed regions).

3.1 Illumination Constraints and Shadows

Illumination Constraints. Based on Planck formula (Equation (14.5)),
Marchant et al. [19] derived the correlation of eg and er as follows:

er = meAg (14.9)

where: A =
(

1
λr
− 1

λb

)
/
(

1
λg
− 1

λb

)
, m = λ5A

g /λ5A
b

λ5
r/λ

5
b

and {er, eg} is the chro-

maticity of the illumination. A andm are constant numbers characterizing the
camera. λc (where index c = {r, g, b}) is the center wavelength of the cam-
era sensitivity. If we plot this correlation into two-dimensional chromaticity
rg-space, we can find that all illumination colors form a curved line, which is
usually called a Planckian locus.

We have mentioned in the beginning of this section that by knowing the cor-
relation of eg and er, we can probably have a well-posed color constancy prob-
lem from two different illuminations, since we have four knowns (σ 1

r , σ
1
g, σ

2
r , σ

2
g)

and four unknowns (sr, sg, e1r, e
2
r). Unfortunately, by further derivation from

Equation (14.7), (14.8) and (14.9), we obtain the following equations:

σ1
r =

sr
(sg)A

(σ1
g)
A (14.10)

σ2
r =

sr
(sg)A

(σ2
g)
A (14.11)

The last two equations show that we cannot determine the absolute values of s r
and sg, since having the same surface chromaticity means that (σ1

r/(σ
1
g)
A =

σ2
r/(σ

2
g)
A). Thus, to solve the problem, we should add more constraints, which

will be discussed further in Section 3.2.

Two Image Chromaticities with the Same Surface Chromaticity While
Equation (14.10) shows that we cannot have absolute values of s r and sg , the
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equation is useful to determine whether two or more image chromaticities (σ c)
have the same surface chromaticity (sc) but different illumination chromaticity
(ec). The equation shows that (sr/(sg)A) can be the same, implying the same
sc, for different values of image chromaticities (σc), implying different ec.
Particularly in outdoor scenes, the equation can be used to detect whether the
shadowed and non-shadowed regions are part of the same surface color [19].

3.2 Straight-Line Constraint

In the previous section we have shown that solely increasing the number
of the inputs (σ1 and σ2) and having exponential correlation of eg and er de-
scribed in Equation (14.9) are not sufficient to solve the color constancy prob-
lem. Following Finlayson et al. [8], we further assume that in two-dimensional
inverse-chromaticity (1/er, 1/eg) space, the illumination can be approximated
by a straight line:

1
eg

= m
1
er

+ c (14.12)

where in Finlayson et al.’s method the values of m and c are constant (not
equal to zero), and are computed beforehand. Figure 14.2 shows a red line
that represents the straight line approximation. Based on Equation (14.12), we
have that:

σir = sre
i
r (14.13)

σig = sg
1

m
eir

+ c
(14.14)
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where i = {1, 2}. By deriving the last two equations further, we can obtain the
following linear correlation:

sg = (m
σig
σir

)sr + σigc (14.15)

The last equation means that in chromaticity space, the image chromaticity
(σc) can form a straight line. This implies that if we have two image chro-

maticities with the same surface chromaticity (sc), then their straight lines
will intersect at a certain location that is identical to the value of s c.

Note that the straight line assumption prevails only for the limited range of
e1c and e2c . For instance, we cannot use the assumption when the temperature
of e1c equals 2500K and the temperature of e2

c equals 8000K, since, instead
of forming a straight line, the illumination chromaticity forms a curved line as
shown in Figure 14.2.

4. Robust Framework for Outdoor Scenes

4.1 Problems

While Finlayson et al’s method elegantly solves the problem of color con-
stancy from varying illumination, we discovered that it is significantly sensitive
to noise.

We have investigated the effects of noise to estimate surface chromaticity
in Finlayson et al.’s method quantitatively. Assuming that we have image

chromaticity σ1
r with noise Δσr, where Δσr/σ1

r � 1, then the estimated
surface chromaticity will deviate from the correct value, described as sc+Δsc,
with Δsc representing the error of the estimation. Mathematically, we found
that the error ratio of the estimated surface chromaticity can be expressed as
by the equation (see Appendix A for detailed derivation):

Δsr
sr
≈ Δσr

σ1
r

1(
1− e1r/e

1
g

e2r/e
2
g

) (14.16)

( As can be seen in the last equation, the error ratio of surface chromaticity
(Δsr/sr) will be large if the two illumination colors e 1

c and e2c are similar.
The same analysis can also be done for the green channel. To investigate this
further, we simulated the error ratio described in the last equation, and we
present the results in Figure 14.3. The y-axis of the figure represents the error
ratio and the x-axis represents the temperature of the second illumination in
Kelvin. The first simulation is shown in red points when the temperature of
the first illumination is 3000K. As can be observed, when the second illumi-
nation’s temperature near 3000K, the error becomes large. Other simulations
using different temperatures of σ1

c can be observed in the blue and green lines.
In this simulation we set Δσr/σr = 0.01.
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Figure 14.3. Simulating the effect of noise in estimating the surface chromaticity.

Thus, if we intend to have relatively accurate results by using Finlayson
et al.’s method, the difference between illuminations (e1

c and e2c ) should be
relatively large. However, a large difference would violate the straight line
assumption explained in Section 3.2. We therefore conclude that because of the
presence of noise, and because Finlayson et al.’s method is restricted to certain
conditions of illumination, the method is unreliable in general conditions of
outdoor illumination.

4.2 Basic Outline

Figure 14.4. The outline of noise reduction and thus of our robust framework.

In principle, to solve the problems in Finlayson et al.’s method, our idea is,
first, to reduce the effect of noise Δσc as much as possible so that the final
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Figure 14.5. Examples of the distance between the two image chromaticities and the generated
possible image chromaticities based on the Planckian locus.

estimation has a relatively small deviation from the ground truth, even if the
difference of illumination chromaticity is relatively small.

The outline of our noise reduction and thus our robust framework is shown
in Figure 14.4. First, from two image chromaticities (σ1

c , σ
2
c ), where σ1

c is
taken from a non-shadowed pixel and σ 2

c is taken from a shadowed pixel, we
estimate the surface chromaticity (sc) by solving Equation (14.15), as shown
in the top rg-space in Figure 14.4.

Second, we generate all possible image chromaticities based on the esti-
mated surface chromaticity and all possible illumination chromaticities, and
then plot them into the rg-space. The curved dash-line in Figure 14.4 rep-
resents the generated image chromaticities. Mathematically, generating the
image chromaticities can be described as:

σplanckc = sce
planck
c (14.17)

where eplanckc is the chromaticity of Planckian locus, i.e., the colors of all
natural illumination, sc is the estimated result, and σplanckc is the generated
image chromaticity.

Third, we examine the correctness of our estimated surface chromaticity
by the following rule: If the estimated surface chromaticity is correct then
the two image chromaticities (σ1

c , σ
2
c ) must lie on the generated curved line;

otherwise, σ1
c , σ

2
c do not lie on the curved line. Examples of inputs that largely

lie on the curved line and that do not lie in the curved line are shown in Figure
14.5. Ex. 1 and Ex. 2 are examples of inputs that largely lie on the curved line,
and Ex. 3 and Ex. 4 are examples of inputs that do not lie on the curved line.

Fourth, if the inputs largely lie on the curved line, then the process termi-
nates and we can have a relatively correct result. Otherwise, we consider that
one or two of the input chromaticities have noise. To reduce this noise, we
change the position by adjusting the value of the image chromaticity slightly.
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After the adjustment, we estimate the value of sc once again and then detect
whether the inputs largely lie on the curved line. The process is done iteratively
until the inputs largely lie on the curved line. In practice we use Euclidean dis-
tance to determine whether the inputs lie on the curved line.

4.3 Image-chromaticity Adjustment

There are two issues in adjusting the values of image chromaticity that has
noise. First, from two image chromaticities (σ1

c and σ2
c ), we should choose

which chromaticity has more noise than the other. This becomes an issue
because we intend to adjust one image chromaticity instead of two. We found
that if we adjust both image chromaticities, ambiguity will result. Consider
Equations (14.10) and (14.11) and assume that both σ 1

c and σ1
c have noise (Δσ1

c

and Δσ2
c ), where at first their values are different (Δσ1

c �= Δσ2
c ), meaning

the values of sr/(sg)A will be different. Then we adjust both of them. This
adjustment could lead to a certain condition where the values of (s r/(sg)A)
are the same, but it does not guarantee that Δσ 1

c = Δσ2
c = 0.

Therefore, we decided to choose only one of the inputs to be modified to re-
duce the error. This constraint brings us two benefits. First, the processing time
becomes fast. Second, we are sure that the processing always terminates. In
our implementation, we chose the pixel from a shadowed region to be adjusted,
since the darker pixels in general have much noise than brighter pixels.

Second, upon choosing the image chromaticity to be adjusted, we have to
decide in which direction the adjustment has to be done. This issue is due to
the random value of noise, which could be positive and negative. To solve the
problem, first we adjust the input in either vertical direction (green-channel)
or horizontal direction (red-channel), which we determine by using following
equation (see Appendix B for the detailed derivation):

(
σBr − σAr

)
(
σBg − σAg

) σBg
σBr

> 1 (14.18)

If the left side of the last equation is larger than 1, then Δσ g/σg has a greater
effect on the estimation. Thus, we move the image chromaticity in parallel
with the green channel (vertical direction). Second, to determine whether the
adjustment should be upward or downward (in the case of vertical direction,
or right or left in the case of horizontal direction), we use the iteration pro-
cedure we have explained in Section 4.2, namely, at first we apply positive
adjustment. If the distance between the adjusted image chromaticity and the
generated curved line is larger than that without adjustment then we should
apply negative adjustment, or vice-versa.
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5. Implementation and Experimental Results

5.1 Implementation

The implementation of our method is as follows. First, from an input image
that has shadows (as an example see Figure 14.6.a), we compute its image
chromaticity by using Equation (14.3). Then, we find pixels from a shadowed
region and a non-shadowed region that have the same surface chromaticity or
the same value of (sr/(sg)A). Figure 14.6.b shows an image representing the
values of (sr/(sg)A). If we plot this value in chromaticity space, then we can
obtain clustered points, as shown in Figure 14.7.a. The blue line represents the
same value of (sr/(sg)A), implying the same value of surface chromaticity.

Upon knowing the values of (sr/(sg)A), we can obtain two or more pixels
that have the same value of (sr/(sg)A) but different values of image chro-
maticity (σc), namely, pixels from shadowed and non-shadowed regions, by
analyzing the points that lie on the blue line shown in Figure 14.7.a. If we
compute the histogram of points lying on the blue line, we will obtain a dis-
tribution shown in Figure 14.7.b (the red lines). As shown in the figure, we
have two peaks. The left peak represents the first illumination chromaticity
(non-shadowed region), and the right peak represents the second illumination
chromaticity (shadowed region). By finding the two peaks, we can have pixels
representing different illumination chromaticity but the same surface chro-
maticity. From those pixels, we can use the algorithm explained in Section 4
to estimate the illumination chromaticities.

Then, having estimated the illumination chromaticities, we intend to obtain
the surface chromaticities of all pixels in the input image. To do this we use a
simple approach. From Figure 14.7.b, we can have two peaks representing the
shadowed and non-shadowed regions. If we cluster the pixels according to the
peaks, we can have all pixels representing the shadowed region and all pixels
representing the non-shadowed region. The result can be seen in Figure 14.6.c,
where blue pixels represent the shadowed region and red pixels represent the
non-shadowed region. Then, we can compute the surface chromaticity simply
by dividing the image chromaticity by the estimated illumination chromaticity.

The result of removing one of the illumination colors can be seen in the
distribution of the green lines in 14.7.b. Unlike the red lines, the green lines
only have one peak.

5.2 Experimental Result

Conditions. We conducted several experiments on real images, taken using
SONY DXC-9000 and Nikon-D1 progressive 3 CCD digital cameras, by
setting their gamma correction off. To ensure that the outputs of the cameras
were linear to the flux of incident light, we used the Macbeth color chart. We
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(a) (b) (c)

Figure 14.6. Result of indoor experiment, by using artificial lights.
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Figure 14.7. (a) Points that have the same value of (s r/sA
g ) plotted in rg-space. (b) Com-

parison results between the histogram of input image chromaticities and that of output image
chromaticities in the red channel

used planar and convex objects to avoid inter-reflection, and excluded saturated
pixels and pixels below the camera dark from the computation. For evaluation,
we compared the results with the average values of image chromaticity of a
white reference image (Photo Research Reflectance Standard model SRS-3),
captured by the same cameras.

Evaluation We have conducted a number of experiments using the Macbeth
color chart under outdoor illumination. One of the experiments was done by
using a green surface taken under cloudy daylight conditions at 16:30 and
17:30. The illumination chromaticities taken from the white reference were
(0.403,0.310) and (0.456,0.305). Using Finlayson et al.’s method, the estima-
tions were (0.525,0.288) and (0.533,0.285), while using our method, the esti-
mations were (0.401,0.324) and (0.409,0.322). We also calculated the average
error and the maximum error of our method compared with Finlayson et al.’s
method, as shown in Table14.1. The total number of images in our experiments
was 30. As shown in Table, our method produced more accurate and robust re-
sults. The error in the table was computed based on chromaticity defined by
standard CIE.
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Table 14.1. Comparison of estimated illumination chromaticities resulting from our method
and from Finlayson et al.’s method.

Average Maximum
Error Error

Our Estimation 0.063 0.16
Finlayson et al.’s Estimation 0.11 0.32

Outdoor Scenes The input of our experiment is shown in Figure 14.8.a, and
the image chromaticity of the input is shown in Figure 14.8.b. Figure 14.8.c
shows the values of (sr/(sg)A). The same values of (sr/(sg)A) represent the
same surface chromaticity. From the input chromaticity (Figure 14.8.b.) and
Figure 14.8.c, we determine pixels that correspond to shadowed regions and
non-shadowed regions of the same surface chromaticity. Figure 14.8.d shows
the shadowed region (blue pixels) and non-shadowed region (red pixels). Note
that, in this study, we do not intend to detect or segment the shadowed region;
the red and blue pixels only represent two image chromaticities we used for
color constancy (thus we do not need to precisely cluster the pixels). Figure
14.8.e shows the result of color constancy, and Figure 14.8.f shows its image
chromaticity. Notice that compared with Figure 14.8.b which has different
image chromaticity in the shadowed area, Figure 14.8.f shows that there is no
longer any difference in illumination color.

Besides using shadows from a single image to evaluate the robustness of
our method, we also conducted experiments by using two images taken at dif-
ferent times, and thus having different colors of illumination. Figure 14.9.a
and 14.9.b show the input images. By using 3D geometrical data (provided by
a laser range sensor), we obtained the corresponding location of each surface
point. For the two different pixels taken from the same point, we estimated
the illumination and then removed the illumination color. Figure 14.9.c shows
our estimated surface color, while Figure 14.9.d shows the result by using the
white reference.

6. Conclusion

We have proposed a method to estimate surface color from shadows. Our
main contribution is to develop a method that is robust and accurate even for
outdoor objects, where conditions are less controllable compared with con-
ditions for indoor objects. The underlying idea of our approach is to reduce
noise and to find the most appropriate parameters of the straight-line assump-
tion. The experimental results for outdoor scene show the effectiveness of our
method.
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(a) (b)

(c) (d)

(e) (f)

Figure 14.8. Results of outdoor experiment: (a) input image (b) input chromaticity (c) the
image of the values of (sr/(sg)

A) (d) the shadowed (blue) and non-shadowed (red) pixels of
the same surface chromaticity (e) the result of color constancy (f) the result in chromaticity.
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(a) (b)

(c) (d)

Figure 14.9. (a) One of the two input scenes, illuminated by cloudy daylight at 18:00. (b) The
other input, illuminated by cloudy daylight at 18:00 on another day. (c) The estimated scene’s
actual color of the image shown in (a) computed using our proposed method. (d) The estimated
scene’s actual color using the standard white reference.

Appendix
The surface chromaticity sr can be derived as:

sr =
σ1

rσ2
r (σ2

g − σ1
g)

σ2
rσ1

g − σ1
rσ2

g

c

m
(14.A.1)

If input σ1
r has noise Δσ1

r , then the estimated surface chromaticity becomes s r + Δsrr:

sr + Δsrr =
(σ1

r + Δσ1
r)σ

2
r (σ2

g − σ1
g)

σ2
rσ1

g − (σ1
r + Δσ1

r )σ2
g

c

m
(14.A.2)

Thus, the error ratio Δsrr/sr can be calculated as:

Δsrr

sr
=

Δσ1
r

σ1
r

1

1− σ1
r/σ1

g

σ2
r/σ2

g
− Δσ1

r

σ1
r

σ1
r/σ1

g

σ2
r/σ2

g

(14.A.3)

Since we assume Δσ1
r/σ1

r 
 1, the equation becomes:

Δsrr

sr
≈ Δσ1

r

σ1
r

1

1− σ1
r/σ1

g

σ2
r/σ2

g

(14.A.4)
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Appendix 14.B
Using the same derivation in Appendix A, when σ 1

g has noise Δσ1
g , then the error ratio of

estimated surface chromaticity becomes:

Δsrg

sr
≈ −Δσ1

g

σ1
g

1

1− σ1
r/σ1

g

σ2
r/σ2

g

(
σ2

r − σ1
r

)
σ2

g

(σ2
g − σ1

g)σ2
r

(14.B.1)

≈ Δsrr

sr

(
σ2

r − σ1
r

)
σ2

g

(σ2
g − σ1

g)σ2
r

(14.B.2)

This shows that even the error ratio of σ1
r and σ1

g are the same, the effect on the estimation error

ratio depends on the factor
(σ2

r−σ1
r)σ2

g

(σ2
g−σ1

g)σ2
r

.
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Chapter 15

SEPARATING ILLUMINATION AND SURFACE
SPECTRAL FROM MULTIPLE COLOR SIGNALS

Akifumi Ikari, Rei Kawakami, Robby T. Tan, and Katsushi Ikeuchi

Abstract A number of methods have been proposed to separate a color signal into its
components: illumination spectral power distribution and surface spectral re-
flectance. Most of these methods usually use a minimization technique from
a single color signal. However, we found that this technique is not effective for
real data, because of insufficiency of the constraints. To resolve this problem,
we propose a minimization technique that, unlike the existing methods, uses
multiple color signals. We present three methods for recovering surface and il-
lumination spectrums which differ in obtaining color signals: first, from two
different surface reflectances lit by a single illumination spectral power distri-
bution; second, from identical surface reflectances lit by different illumination
spectral power distributions; and third, from a single surface reflectance with
two types of reflection components, diffuse and specular, lit by a single illumina-
tion spectral power distribution. Practically we applied our method to deal with
the color signals of a scene taken by the interference filter, and we separated its
illumination spectral power distribution and surface spectral reflectance.

1. Introduction

Observed color signal of a cultural heritage is a product of two components:
illumination spectral power distribution and surface spectral reflectance. To
separate the spectral reflectance from the illumination spectrum is an impor-
tant issue in computer vision and color science, since many applications in
those fields, such as color-based object recognition, reflection component sep-
aration, real object rendering, etc., require the reflectance information of the
target object. The color signal separation technique is part of a color constancy
algorithm [9, 6, 8, 7], which is commonly done in a three-color channel (RGB)
operation instead of in a spectral operation.

In three-color channels (Red, Green, Blue, or RGB), various color constancy
methods have been proposed. For instance, Finlayson et al. [6] showed that

illumination change that causes the problem of color constancy can be turned
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into a crucial constraint to solve the problem of color constancy itself. Using
a straight-line approximation model of illumination in diagonal matrix com-
ponents space, they proposed an intersection approach of two pixels with the
same surface color but lit by different illumination. Tan et al. [21] introduced
a method focusing on highlighted regions that could be applied for both single
and multi-colored surface.

While the aforementioned methods are applicable for separating three-color
channel data, unfortunately, most of them cannot be applied to spectral (color
signal) separation, since spectral data cannot be converted into chromaticity
values, on which most methods are based, without losing spectral information
(the metamerism problem). Hence, for color signals, a different technique is
required.

Tominaga et al. [25] have shown that, by using the dichromatic reflectance
model, illumination distribution can obtained using both highlighted (specu-
lar) regions and diffuse regions of two different surface colors. By using this
method, high performance results are obtained. Marchant et al. [14] intro-
duced spectral constancy under daylight, by assuming that illumination could
be approximated with a blackbody radiator. This method can detect whether a
surface has the same surface spectral reflectance, yet it is not intended to sep-
arate illumination spectral power distribution and surface spectral reflectance.

Ho et al. [11] showed that, by considering illumination spectral power dis-
tribution and surface spectral reflectance to be the sums of linear basis func-
tions[3, 12, 16, 19], the color signal separation can be done by minimizing
the square difference of a color signal and product of the sums of linear il-
lumination basis functions and surface spectral reflectance basis functions.

While theoretically this method can separate a color signal into its compo-
nents, a few problems exist. First, some parts of the separated signal in certain
cases become negative, which infringes on the physical reality of the spectral
components since, in reality, those components are always positive. Second, in
cases where the constraints are insufficient, the minimization algorithm could
be trapped in the local minimum, thereby producing incorrect separation.

Chang et al. [1] improved the method of Ho et al. by putting additional
constraints on the illumination and surface reflection components, as well as
using a simulated annealing algorithm and a hit-and-run algorithm to increase
the efficiency and stability. Their method gives a more robust result compared
with that of Ho et al.; however, their separation still suffers from the same
drawbacks as those of Ho et al.’s method. Their main problem is that a single
color signal has such limited constraints that no current algorithm can avoid
the trap of the local minimum.

In this chapter, our goal is to describe how to separate color signals into
illumination spectral power distribution and surface spectral reflectance com-
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ponents by giving more constraints in the input data, and separate a spectral
image into illumination spectral power distribution and reflectance spectral
images. We propose a minimization technique that, unlike the existing meth-
ods, uses multiple color signals. These multiple color signals can improve
the robustness of the estimation because, by using them, we can obtain more
constraints in the input data. In our implementation of using multiple color
signals, we introduce three different approaches: first, color signals obtained
from two different surface reflectances lit by a single illumination spectral
power distribution; second, color signals from identical surface reflectances
lit by different illumination spectral power distributions; and third, color sig-
nals from identical surface reflectances but different types of reflection com-
ponents (diffuse and specular pixels) lit by a single illumination spectral power
distribution. By using these three conditions of color signals, a better solution
can be obtained, and the stability of the separation increases.

To obtain spectral images, Schechner[18] shows that by using an inter-
ference filter and performing a mosaicing algorithm[20, 15, 27, 2], we can
obtain spectral images. But their approach cannot obtain the exact spectral
distribution because they use the gray world assumption. To measure a correct
spectral distribution, we have to know the conversion function that includes a
camera sensitivity and the filter’s absorptance. So we show how to obtain the
conversion function correctly. And then, we apply a separation algorithm to
these spectral images.

The rest of the chapter is organized as follows. In Section 2, we discuss the
theoretical background of the proposed method. In Section 3, we explain our
method of dealing with multiple color signals. The method to obtain a color
signal is shown in Section 4. The implementation of our algorithm and the
experimental results are provided in Sections 5 and Section 6. And finally, in
Section 7 we conclude this chapter.

2. Theoretical Background

2.1 Linear Basis Functions

Reflected light from an object is the product of illumination spectral power
distribution (SPD) and surface spectral reflectance. Let I(λ) be the reflected
color signal at a wavelength λ, E(λ) be the illumination SPD and S(λ) be the
surface spectral reflectance. Then, the color signal I(λ) can be expressed as
follows.

I(λ) = E(λ)S(λ) (15.1)

This study aims to separate the color signal I(λ) into those two components
E(λ) and S(λ).

A number of researchers have asserted that the natural illumination spectrum
E(λ) can be approximated by the linear combination of a small number of
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basis functions[12, 19].

E(λ) �
m∑
i=1

eiEi(λ) (15.2)

where Ei(λ) are the basis functions and ei are the corresponding coefficients.
Judd at el.[12] confirmed that the last equation approximates the SPD of day-
light and indoor light sources that emit lights by heat. They also reported that
three basis functions are sufficient to cover the entire SPDs of natural illumi-
nation (m = 3). Judd et al.’s three illumination basis functions are shown in
Fig.1.a. Slater et al. [19] argued that more sophisticated approximation needs
eight basis functions. Yet, they also admitted that the first three dominantly
cover the whole SPDs. Three basis functions were used by Ho et al. [11] and
Chang et al. [1] in their estimation process.

Similar to illumination SPDs, several researchers [3, 16] have shown that
the surface spectral reflectance can be expressed by the basis functions:

S(λ) �
n∑
j=1

sjSj(λ) (15.3)

where Sj(λ) are the basis functions and sj are the coefficients. Fig.1.b shows
Parkkinen et al.’s four reflectance basis functions[16]. Parkkinen et al. ex-
amined various surface colors and concluded that eight basis functions could
completely cover all the existing surface color database. They also showed
that the first three basis functions cover 99% of the database within an error of
10 %. Cohen et al. [3] determined the basis functions by investigating Mun-
sell chips. Ho et al. [11] and Chang et al. [1] used three basis functions for
surface spectral reflectance. As the number of basis functions increases, the
approximation becomes accurate.

2.2 Separation Model

A color signal can be resolved into illumination SPD and surface spectral
reflectance using the minimization technique;

F (u) =
∑
λ

⎛
⎝ m∑
i=1

eiEi(λ)
n∑
j=1

sjSj(λ)− I(λ)

⎞
⎠2

(15.4)

where the wavelength λ ranges over the visible spectrum from 400nm to
700nm. The last equation is derived from Equations (15.1), (15.2), and (15.3).
By searching the coefficients u = [e1, e2, · · · , em, s1, s2, · · · , sn]t which min-
imize the objective function F , the original illumination SPD E(λ) and the
surface spectral reflectance S(λ) can be recovered.
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Figure 15.1. a. Judd’s [12] three basis functions of illumination distribution. b. Parkkinen’s
[16] first four basis functions of surface spectral reflectance.

In order to obtain realistic results, the following constraints proposed by
Chang et al. [1] should be added.

I(λ) ≤ ∑m
i=1 eiEi(λ) ≤ maxlimit (15.5)

0 ≤ ∑n
j=1 sjSj(λ) ≤ 1 (15.6)

The two equations represent the physical reality of illumination and surface
spectral reflectance. Equation (15.5) means that the illumination SPD is
always larger than the input color signal. The upper limitation has no physical
meaning but it is important for computation. Equation (15.6) limits surface
spectral reflectance to be between zero and one. It avoids scale ambiguity.
Chang et al. [1] applied those constraints to the minimization algorithm of
Equation (15.4) using the hit-and-run algorithm and the simulated annealing
algorithm.

3. Proposed Method: Separation using Multiple Color
Signals

This chapter proposes a new method that uses multiple signals to estimate
illumination SPDs and surface reflectances. The conventional methods only
use a single color signal. However, a real scene has an abundance of avail-
able color signals. Three types of constraints are introduced in our method: (1)
Multiple surfaces with identical illumination. (2) Identical surfaces with multi-
ple illumination. (3) Signals from specular and diffuse surfaces. Each includes
two strategies and corresponding error functions. The more spectrals are used,
the more constraints are obtained. Hence, this constrained separation can pro-
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duce more accurate results compared to the conventional one. The system to
acquire the spectrums of the entire scene are described in Section 4.

3.1 Multiple Surfaces with Identical Illumination

Constrained signal separation is expected when multiple color signals are
obtained from multiple surfaces illuminated by identical illumination. The
condition is illustrated in Figure 15.2. Here, two strategies for separation cal-
culation can be considered using the minimization technique. (1) We minimize
the difference between the input signals and the estimated signals. (2) Since the
illumination is identical, we minimize the difference between the illumination
calculated from one surface and the other. For efficient and stable decompo-
sition, it is important to choose surface points chromatically as different as
possible.

3.1.1 Strategy (1)

We minimize the sum of Equation (15.4) at each surface under the constraint
that the illumination SPDs are common. The error function can be expressed
as follows:

F (u) =
points∑
p=1

∑
λ

⎛
⎝ m∑
i=1

eiEi(λ)
n∑
j=1

sp,jSj(λ)− Ip(λ)

⎞
⎠2

(15.7)

where Ei(λ) and Sj(λ) are the basis functions of illumination and surface
spectral reflectance, ei and sp,j are the coefficients of the corresponding basis
functions, and Ip(λ) are the input signals. Ip(λ) and sp,j have suffix p to
express each surface point. The coefficients u = [· · · , ei, · · · , sp,j, · · ·]t are
optimized so that they minimize the error function.

The constraints that represent physical reality, which have been described
in Equations (15.5) and (15.6), can be combined to the above minimization.
Though Equation (15.5) can be directly used, Equation (15.6) should be mod-
ified as follows:

0 ≤
n∑
j=1

sp,jSj(λ) ≤ 1 (p = 1, 2, · · · , points) (15.8)

3.1.2 Strategy (2)

Suppose that two color signals I1(λ), I2(λ) are obtained from two surfaces
S1(λ), S2(λ) illuminated by an identical illumination E(λ). Since the illu-
mination is identical, the following constraint can be obtained using Equation
(15.1).

I1(λ)/S1(λ)− I2(λ)/S2(λ) = 0 (15.9)
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Figure 15.2. Example of multiple surfaces with identical illumination

By plugging Equation (15.3) into the last equation, we could derive the follow-
ing error function to be minimized.

F (u) =
∑
λ

(
I1(λ)

m∑
i=1

s2,iSi(λ)− I2(λ)
m∑
i=1

s1,iSi(λ)

)2

(15.10)

Each surface spectral reflectance S1(λ, S2(λ) can be estimated by optimiz-
ing the coefficients u = [· · · , s1,i, · · · , s2,i, · · ·]t in the last equation so that the
difference becomes the minimum. The same constraints for physical reality
as in the previous subsubsection 3.1.1 can be combined with the minimizing
function.

3.2 Identical Surfaces with Multiple Illumination

Another constrained separation can be considered using spectrums from
identical surfaces illuminated by multiple light sources. Figure 15.3 illustrates
the condition. Similar to the case of multiple surfaces, two strategies will be
presented for the decomposition. (1) We minimize the difference between the
input signals and the estimated signals. (2) Since the surfaces are identical, we
minimize the difference between the surfaces’ spectral reflectances calculated
from each color signal.

3.2.1 Strategy (1)

The separation can be resolved by minimizing the sum of Equation (15.4)
of each color signal under the constraint that the surface spectral reflectance is
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common:

F (u) =
points∑
p=1

∑
λ

⎛
⎝ m∑
i=1

ep,iEi(λ)
n∑
j=1

sjSj(λ)− Ip(λ)

⎞
⎠2

(15.11)

and using the physical constraints described in Equation (15.6) and the follow-
ing equation:

I(λ) ≤
m∑
i=1

ep,iEi(λ) ≤ maxlimit (p = 1, 2, · · · , points) (15.12)

Ip(λ) and ep,j have suffix p to denote each color signal.
The problem of this approach is similar to that of subsubsection 3.1.1, but

the constraints are different. In this approach, illumination constraints play
a dominant role, which theoretically gives more constraints compared to the
approach in 3.1.1 because of the lower dimensionality of illumination SPDs.

3.2.2 Strategy (2)

Given two color signals I1(λ), I2(λ) obtained from a common point S(λ)
but with different illuminationsE 1(λ), E2(λ), the following error function can
be derived using a derivation similar to subsubsection 3.1.2 where Equation
(15.10) is introduced.

F (u) =
∑
λ

(
I1(λ)

m∑
i=1

e2,iEi(λ)− I2(λ)
m∑
i=1

e1,iEi(λ)

)2

(15.13)

By minimizing the last equation, we can obtain the illumination SPDs and
then the surface spectral reflectance. The constraints for physical reality are
Equations (15.6) and (15.12).

3.3 Specular and Diffuse Points

Dielectric inhomogeneous material exhibits specular and diffuse reflections.
By targeting this material, we can take advantage of the color signals of spec-
ular and diffuse points illuminated by the same illumination. Figure 15.4
illustrates this situation. In this subsection, we show the relationship between
diffuse and specular points and explain two algorithms to utilize them for
color signal separation.

The specular reflection can be modeled by the well-known dichromatic re-
flection model. It describes the observing light of a specular point as follows:

I(λ) = CsE(λ)Ss(λ) + CbE(λ)Sb(λ) (15.14)

where Ss(λ) is the specular spectral reflectance function, and Sb(λ) is the dif-
fuse spectral reflectance function. (The suffix b stands for the body reflection.)
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Figure 15.3. Example of identical surfaces, different illuminations

The geometric factors Cs and Cb are constant over the wavelengths. Sb(λ) can
be rewritten as

∑n
j=1 sjSj(λ) using the basis functions. Further, we introduce

the Neutral Interface Reflection (NIR) assumption named by Lee et al. [13]
According to this assumption, the reflectance of specular component S s(λ)
can be assumed to be constant over the wavelengths. This is because the SPD
of reflected light of a specular component solely is almost identical to that of

the incident light for most dielectric inhomogeneous objects. Parkkinen et al.
[16] showed the first basis function S1(λ) can be considered to be a constant
(Fig.1.b, line 1). Therefore, Ss(λ) can be rewritten as kS1(λ) where k is a
constant scalar.

By combining the dichromatic reflection model with the NIR assumption
and the linear basis functions, the light of a specular point can be expressed
as follows:

Is(λ) � CsE(λ)kS1(λ) + CbE(λ)
∑n
j=1 sjSj(λ) (15.15)

= E(λ)
∑n
j=1 ss,jSj(λ) (15.16)

where new coefficients ss,j is introduced to simplify the equation.
After modeling the light of a specular point, we now consider the light of a

diffuse point. We assume that it has the same surface spectral reflectance as
the specular point. Therefore, the light of a diffuse point can be expressed as
follows:

Ib(λ) = C′
bE(λ)Sb(λ) � C′

bE(λ)
∑n
j=1 sjSj(λ) (15.17)

= E(λ)
∑n
j=1 sb,jSj(λ) (15.18)

400 500 600 700
Wavelength

400 500 600 700
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where C′
b is another geometric factor for the diffuse point. New coefficients

sb,j is introduced for the simplification.
From Equations (15.15) and Equation (15.17), the relation of coefficients

between specular and diffuse point is expressed as follows.

ss,2 : ss,j = sb,2 : sb,j (j = 3 ∼ n) (15.19)

3.3.1 Strategy (1)

As in the previous subsections, the first strategy in this subsection is to min-
imize the difference between the input signals and the approximated signals.
In order to use the hit-and-run algorithm, we write the objective function as
the following equations:

F (u) =
∑

p={s,b}

∑
λ

⎛
⎝αp m∑

i=1

eiEi(λ)
n∑
j=1

sp,jSj(λ)− Ip(λ)

⎞
⎠2

(15.20)

ss,j = sb,j (j = 2 ∼ n) (15.21)

where αp is the ratio between ss,2 and sb,2 in Equation (15.19). The equation
can generate a new state efficiently when using the hit-and-run algorithm.

3.3.2 Strategy (2)

We can utilize the fact that the surface spectral reflectance of body reflec-
tion component Sb(λ) is common in both diffuse and specular points. By
canceling out Sb(λ) from Equations (15.14) and (15.17), the following relation
is derived:

C′
bIs(λ)− CbIb(λ) = C′

bCsE(λ)Ss(λ) (15.22)

where Is(λ) is the light from the specular point and I b(λ) is the light from
the diffuse point. Using the last equation, we can linearly solve the unknown
coefficients.

The details of solving the unknowns are as follows. Let us divide the last
equation by C ′

b, then
Is(λ)− gIb(λ) = hE(λ) (15.23)

where we replaced Cb/C′
b by g, and CsSs(λ) by h. Note that h is also a con-

stant number since we assume the NIR assumption. hE(λ) can be rewritten
as

∑m
i=1 heiEi(λ) using the basis functions of illumination SPDs. Let us re-

define the coefficients ei so that it means hei. Then, Equation (15.23) becomes

Is(λ)− gIb(λ) =
m∑
i=1

eiEi(λ) (15.24)
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Figure 15.4. Example of a specular color signal and a diffuse color signal

which can be transformed into the linear equation as follows;

⎛
⎝ E1(λ) . . . Em(λ) Ib(λ)

⎞
⎠

⎛
⎜⎜⎜⎝

e1
...
em
g

⎞
⎟⎟⎟⎠ = Is(λ) (15.25)

Using the last equation, we can linearly solve the unknown coefficients e i, g.

4. Acquiring Scene Spectrums

This section describes a system to measure the spectrums of an entire scene.
Conventional equipment, such as a spectrometer or a line spectral scanner,
only measures spectrums of a point or a line. The following system has a wide
field of view, which is a great advantage for the proposed method because it
needs spectrums from multiple points. The system, originally proposed by
Yoav et al.[18], consists of an interference filter and a monochrome camera.
First, we briefly explain the interference filter and the method by Yoav et al.
Second, we present two types of camera motion: parallel translation and pan
rotation. Pan rotation is important to measure the spectrum of a specular
point. Then, we describe a method to convert images to spectrums and to
estimate the sensitivity of a camera and the filter itself, which is necessary to
obtain accurate data.

Specular

Diffuse

400 500 600 700
λ mm
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Figure 15.5. a. The range of penetrating lights of an interference filter. b. An interference
filter and a monochrome camera (SONY XC55)

4.1 Interference Filter

An interference filter is a prism filter whose spectral sensitivity is linearly
spatially varying. A particular wavelength that the filter passes varies linearly
from 400 nm to 700 nm across the filter (horizontally). Fig.15.5.a illustrates
this characteristic. Yoav et al.[18] attached the filter to an 8-bit monochrome
camera as Fig.15.5.b. shows.

The mechanism of how the system captures spectrums can be explained
using Fig.15.6. Let us consider a three-dimensional space formed by an image
plane (x, y) and a wavelength (λ). In this space, the system captures a plane
where x and λ are linearly correspondent. Therefore, by moving the camera
continuously, the entire three-dimensional data can be obtained. Unified image
can be produced by mosaicing the images[20, 15, 27, 2] using a smoothing
algorithm and an edge detection algorithm.

4.2 Camera motion

Two types of camera motion can be considered: parallel translation and pan
rotation. Both motions are illustrated in Fig.15.6.a. and b. In our implemen-
tation, a camera is usually set either on a positioning stage that moves parallel
to the horizontal axis x of the image plane, or on a rotation stage so that the
plane of rotation becomes parallel to the x axis of the image plane.

These two motions have their advantages and disadvantages. Parallel trans-
lation enables a camera to move a long distance, but it cannot capture a spec-
trum of a specular point, because the position of a specular point changes
as a camera changes its viewing position. It also causes azimuth difference
depending on the distance from the camera to the target points. Unlike paral-
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Figure 15.6. Capturing scene spectrums using an interference filter. a. Parallel translation. b.
Pan rotation.

lel translation, pan rotation does not cause those problems though it fixes a
camera on a certain viewing position.

4.3 Conversion of Input RGB to Spectrum

Spectral data is converted from image data as follows. First, we find the
corresponding points between the collected images. This can be achieved by
the mosaicing technique or calibrating the camera position. Owing to the
characteristic of an interference filter, the image intensity I(x, y) implies the
spectral intensity of a certain wavelength λ of the point (x, y);

ISpec(x, y, λ) = I(x, y) where λ = ax+ b

By tracking the image coordinates (x, y) of a certain point through the captured
images, the spectral intensity of the point can be calculated.

Second, we have to consider the light energy absorption by the interference
filter and the camera sensor. The obtained spectral intensity is affected by
those factors.

ISpec(x, y, λ) = E(x, y, λ)S(x, y, λ)F (λ)C(λ)

where E(x, y, λ) is the illumination SPD at (x, y), S(x, y, λ) is the surface
spectral reflectance, F (λ) is the transmissivity of an interference filter, and
C(λ) is the sensitivity of a camera sensor. Therefore, the real spectral intensity
of an incoming light ray is expressed as follows.

IReal(x, y, λ) = E(x, y, λ)S(x, y, λ) = I(x, y)/F (λ)C(λ)(15.26)

where λ = ax+ b

The parameters a, b, and F (λ)C(λ) must be clarified before we use the sys-
tem. a and b were calculated by taking images under single-wavelength laser
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lights. F (λ)C(λ) ≡ H(λ) should be the function that minimizes the differ-
ence between the real spectrum and the spectrum captured by the system.

18∑
p=1

∑
λ

(
ISpec,p(λ)−H(λ)IReal,p(λ)

)2
(15.27)

In our experiments, we measured the spectrum of eighteen colors of the Mac-
beth Color Checker under blue lights with a spectrometer (IReal(λ)) and the
system (ISpec(λ)). From the last equation,H(λ) should be as follows.

H(λ) =
18∑
p=1

ISpec,p(λ)IReal,p(λ) /
18∑
p=1

IReal,p(λ)2 (15.28)

5. Implementation

Our implementation is based on the simulated annealing algorithm with the
hit-and-run algorithm [1]. The simulated annealing algorithm enables us to
avoid local minima in solving a non-linear optimization problem. While using
the hit-and-run algorithm, we can obtain a good performance in searching the
interior point as a new state.

The simulated annealing algorithm is expressed as follows.

1 Decide an initial state for a variable u = [e1, ..., em, s1, ..., sn, α]t

2 Generate a new state u′′ by the hit-and-run algorithm. Details are de-
scribed below.

3 If ΔF = F (u)−F (u′′) < 0, or exp(−ΔF/Te(t)) > Random(0, 1),
then u = u′′ and go to 2. Otherwise, go directly to 2.

where F is the minimizing function and Te is called the cooling function,
which controls the size of the searching space. Te varies according to t, which
reflects the current number of the iteration. We used Te(t) = Const/(1 + t)2.
The function Random(0, 1) returns a uniformly random number between 0
and 1. The vector u that minimizes F (u) can be obtained by repeating the
above process until convergence.

The hit-and-run alogrithm is used to make a good performance in searching
an interior point in a convex space. The process is as follows:

1 Given an interior point u,

2 Generate a vector u′ whose probability is equal to that of u, randomly.
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3 Decide the maximum and minimum range r+, r− by the next calcula-
tion.

k1,λ =
maxlim−∑m

i=1 eiEi(λ)∑m
i=1 e

′
iEi(λ)

, k2,λ =
−∑m

i=1 eiEi(λ)∑m
i=1 e

′
iEi(λ)

,

k3,λ =
1−∑n

j=1 sjSj(λ)∑n
j=1 s

′
jSj(λ)

, k4,λ =
−∑n

j=1 sjSj(λ)∑n
j=1 s

′
jSj(λ)

r+ = arg min kl,λ r− = arg max kl,λ (l = {1, ..., 4})

4 u′′ = u + (Random(0, 1)r+ + (1− Random(0, 1))r−)u′

The calculated vector u′′ will be the new state in the simulated annealing algo-
rithm.

6. Experimental Results

6.1 Experiments using Point Spectrums

To confirm the performance of the separation algorithm, we performed ex-
periments using some samples. We measured color signal spectrums using the
Spectrascan PR650. By using Spectrascan PR650, we can measure a color
signal from 380nm to 780nm by 4nm. We resampled color signals from 400nm
to 700nm by 5nm. We used the Macbeth Color Checker as our target object.
For the basis functions, we used Judd’s [12] three illumination basis functions
and Parkkinen’s [16] reflectance basis functions.

Fig.15.7 shows the result of estimation using multiple surfaces. Two illumi-
nations were tested: outdoor illumination and incandescent light at 2800K. In
those experiments, three reflectance basis functions were used. The top row in
Fig.15.7 shows the results using the outdoor illumination. Estimated illumina-
tion SPD by using one, two, and three points of the Macbeth Color Checker’s
(red, green and blue colors), are shown. Better results were obtained when

the number of points increased. The bottom row in Fig.15.7 shows the results
using the incandescent light at 2800K. As in the first experiment, one, two and
three points of the Macbeth Color Checker (red, green and blue colors), are
used. Using incandescent light, our algorithm provided good separation results
with multiple color signals. As shown in Fig.15.7.d, the results using the red
and blue points’ spectrals, or the red and green and blue points’ spectrals are
quite satisfactory.

Fig.15.8 also shows the result of estimation using multiple surfaces. This
time, eighteen points’ spectrals of the Macbeth Color Checker were used.
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Figure 15.7. Experimental results using multiple surfaces. Top row: Measured outdoor illu-
mination SPD, and the estimated illumination by the separation algorithm using a: one point,
and b: multi points. Bottom row: Measured illumination SPD of incandescent light at 2800K,
and the estimated illumination using c: one point, and d: multi points.

Furthermore, three, four, six, and eight reflectance basis functions were tested,
respectively. Outdoor illumination SPD was used.

Fig.15.9 shows the result of estimation using multiple illuminations. Two il-
luminations were outdoor illumination and incandescent light at 2800K. Three
points of the Macbeth Color Checker (red, green and blue colors) were used.
Here, two strategies described in 3.2.1 and 3.2.2 were tested. The top row
shows the result of strategy (1) in 3.2.1. Fig.15.9.a shows the estimated illumi-
nation using the blue surface, and Fig.15.9.b shows the estimated illumination
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Figure 15.8. Measured outdoor illumination SPD and the estimated illumination by the sep-
aration algorithm with three, four, six, and eight reflectance basis functions using all eighteen
colors of the Macbeth Color Checker.

using the green. Eight reflectance basis functions were used for the experi-
ments. As shown in Fig.15.9.a, a blue surface lit by the outdoor illumination
and incandescent light at 2800K provided a good result. The bottom row shows
the separation results by the strategy (2) in 3.2.2. The estimated illuminations
are shown in Fig.15.9.c and d. Fig.15.9.c shows the result using the red surface,
and Fig.15.9.d shows the result using the blue surface. As shown in Fig.15.9.d,
a red point lit by the outdoor illumination and incandescent light at 2800K
provided an especially good result.

Fig.15.10 shows the result of estimation using specular and diffuse points.
We tested two illuminations: outdoor illumination and incandescent light at

2800K. Red, green, and blue points’ diffuse and specular spectrals were used.
Here, we tested two strategies described in 3.3.1 and 3.3.2. The top row shows
the results of strategy (1) in 3.3.1. The estimated illuminations are shown
in Fig.15.10.a and b. Fig.15.10.a shows the results using incandescent light
at 2800K, and Fig.15.10.b shows the results using outdoor illumination. The
bottom row shows the results of strategy (2) in 3.3.2. Fig.15.10.c shows the
results using incandescent light at 2800K, and Fig.15.10.d shows the results
using outdoor illumination. As can be observed in Fig.15.10, utilizing diffuse
and specular points using strategy (2) produces excellent results.
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Figure 15.9. Experimental results using multiple illuminations. Top row: Measured outdoor
illumination SPD and incandescent light at 2800K, and the estimated illuminations by the sep-
aration algorithm (strategy (1)) using a surface (a: blue, b: green) under those illuminations.
Bottom row: Measured outdoor illumination SPD and incandescent light at 2800K, and the es-
timated illuminations by the separation algorithm (strategy (2)) using a surface (c: blue, d: red)
under those illuminations.

Table 15.1. The error value of one point algorithm and our algorithms, using all combinations
of eighteen colors of the Macbeth Color Checker.

Light Single Multiple Multiple Specular-diffuse
source point surfaces illuminations strategy (1) strategy (2)
outdoor 34.55 11.39 28.10 13.01 0.76
incandescent 11.22 0.79 26.16 3.18 0.54

Table.1 shows the overall error value of each algorithm. By using the multiple-
point algorithm, especially using specular-diffuse points, a great performance
can be achieved.
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Figure 15.10. Experimental results using specular and diffuse spectrums. Top row: Measured
SPD of a: halogen lamp b: outdoor illumination, and the estimated SPD by the separation algo-
rithm (strategy (1)), using red, green, and blue diffuse-specular points. Bottom row: Measured
SPD of c: halogen lamp and d: outdoor illumination, and the estimated SPD by the separation
algorithm (strategy (2)), using red, green, and blue diffuse-specular points.
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6.2 Experiments using Scene Spectrums

We used the system described in Section 4 to acquire scene spectrums. An
interference filter was attached to a SONY XC-55, monochrome camera. We
took images by moving the camera continuously with both parallel translation
and pan rotation. The conversion function, H(λ) in Equation (15.28), was

calculated by the method described in 4.3. First, we took the Macbeth Color
Checker continuously under blue illumination, by moving a camera with par-
allel translation. Then we mosaiced the images. Using the spectrums from
the system and a spectrometer, we calculated the conversion function with
Equation (15.28).

Fig.15.11 shows the scene separation result using the multiple-points algo-
rithm. We took scenes with parallel translation under two lights: incandescent
light at 2800K and outdoor illumination. The top two images are the obtained
spectral images under each light source. The figure in the middle row shows
the measured and estimated illumination SPD. The bottom two images are the
estimated surface-reflectance images.

Fig.15.12 shows the scene separation result using specular and diffuse points.
The top left image shows the RGB image that is converted from obtained

spectral images. Each pixel in the top left image contains spectral data. They
were obtained with pan rotation under an incandescent light source. The top
right image shows obtained specular and diffuse spectral distribution, from two
positions shown by blue squares in the top left image. The bottom right im-
age shows the measured and the estimated illumination SPD. The algorithm
shows a good performance. The bottom left is the estimated reflectance image.
Highly precise mosaicing was required for this experiment. The specular data
tend to have large amount of noise if the specular point is mismatched.
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Figure 15.11. Scene separation result using algorithm (26). This was achieved by taking a
scene moving a camera in parallel translation under incandescent light at 2800K and outdoor
illumination, using red, green, and blue points of the Macbeth Color Checker.
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Figure 15.12. Scene separation result using specular and diffuse points. This was achieved by
taking a scene moving a monochrome camera pan rotated under outdoor illumination.
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7. Conclusion

In this chapter, we have evaluated a spectrum separation method under three
different conditions, as follows: 1) points with different color spectrum distri-
butions illuminated by the same light source, 2) the same point under different
illumination sources of different spectrum color distributions, 3) diffuse and
specular points under the same illumination source. We found that using
multi-point spectrum distributions significantly increases reliability in sepa-
rating scene spectrum distribution into illumination and reflectance spectrum
distribution.
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Chapter 16

COLOR CONSTANCY THROUGH INVERSE-
INTENSITY CHROMATICITY SPACE

Robby T. Tan, Ko Nishino, and Katsushi Ikeuchi

Abstract Existing color constancy methods cannot handle both uniformly colored surfaces
and highly textured surfaces in a single integrated framework. Statistics-based
methods require many surface colors, and become error prone when there are
only a few surface colors. In contrast, dichromatic-based methods can success-
fully handle uniformly colored surfaces, but cannot be applied to highly tex-
tured surfaces since they require precise color segmentation. In this chapter, we
present a single integrated method to estimate illumination chromaticity from
single-colored and multi-colored surfaces. Unlike existing dichromatic-based
methods, our proposed method requires only rough highlight regions, without
segmenting the colors inside them. We show that, by analyzing highlights,
a direct correlation between illumination chromaticity and image chromaticity
can be obtained. This correlation is clearly described in “inverse-intensity chro-
maticity space” , a novel two-dimensional space we introduce. In addition, by
utilizing the Hough transform and histogram analysis in this space, illumination
chromaticity can be estimated robustly, even for a highly textured surface.

1. Introduction

The spectral energy distribution of light reflected from an object is the prod-
uct of illumination spectral energy distribution and surface spectral reflectance.
As a result, the color of an object observed in an image is not the actual color of
the object’s surface. Recovering the actual surface color requires the capability
to discount the color of illumination. A computational approach to recover the
actual color of objects is referred to as a color constancy algorithm .

Human perception inherently has the capability of color constancy. This ca-
pability plays an important role in object recognition processes. Unfortunately,
up to now, the mechanism of human perception color constancy has not been
well understood. For machine vision, color constancy is essential for various
applications such as color-based object recognition, color reproduction, image
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retrieval, reflection components separation, etc. This has motivated researchers
in the field of machine vision to develop various color constancy methods.

Previous Work. Finlayson et al. [6] categorized color constancy meth-
ods into two classes: statistics-based and physics-based methods. Statistics-
based methods utilize the relationship between color distributions and statisti-
cal knowledge of common lights and surfaces [2, 4, 9, 21, 25, 27]. One draw-
back of these methods is that they require that many colors be observed on the
target surfaces. On the other hand, physics-based methods [3, 5, 10, 17, 18],
whose algorithms are based on understanding the physical process of reflected
light, can successfully deal with fewer surface colors, even to the extreme of
a single surface color [6, 7]. In addition, based on the surface type of the
input image, physics-based methods can be divided into two groups: diffuse-
based and dichromatic-based methods. Diffuse-based methods assume that
input images have only diffuse reflection, while dichromatic-based methods
assume both diffuse and specular reflections occur in the images. Geusebroek
et al. [12, 11] proposed a physical basis of color constancy by considering
the spectral and spatial derivatives of the Lambertian image formation model.
Andersen et al. [1] provided an analysis on image chromaticity under two
illumination colors for dichromatic surfaces. Since our aim is to develop an al-
gorithm that is able to handle both a single and multiple surface colors, in this
section, we will concentrate our discussion on existing physics-based methods,
particularly dichromatic-based methods.

Methods in dichromatic-based color constancy rely on the dichromatic re-
flection model proposed by Shafer [23]. Klinker et al. [14] introduced a
method to estimate illumination color from a uniform colored surface, by ex-
tracting a T-shape color distribution in the RGB space. However, in real im-
ages, it becomes quite difficult to extract the T-shape due to noise, thereby
making the final estimate unreliable.

Lee [17] introduced a method to estimate illumination chromaticity using
highlights of at least two surface colors. The estimation is accomplished by
finding an intersection of two or more dichromatic lines in the chromaticity
space. While this simple approach based on the physics of reflected light pro-
vides a handy method for color constancy, it suffers from a few drawbacks.
First, to create the dichromatic line for each surface color from highlights, one
needs to segment the surface colors beneath the highlights. This color seg-
mentation is difficult when the target object is highly textured. Second, nearly
parallel dichromatic lines caused by similar surface colors can make the inter-
section sensitive to noise. Consequently, for real images, which usually suffer
from noise, the estimation for similar surface colors becomes unstable. Third,
the method does not deal with uniformly colored surfaces. Parallel to this,
several methods have been proposed in the literature [3, 24, 26].
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Recently, three methods which extend Lee’s algorithm have been proposed
[17]: Lehmann et al. [20] developed a more robust technique to identify the
dichromatic lines in the chromaticity space. The success of this technique
depends on an assumption that, in each highlight region, the surface color
is uniform. As a consequence, the technique fails when dealing with com-
plex textured surfaces, which usually have more than one surface color in their
highlighted regions. Finlayson et al. [8], proposed imposing a constraint on
the colors of illumination. This constraint is based on the statistics of natural il-
lumination colors, and improves the stability in obtaining the intersection, i.e.,
it addresses the second drawback of Lee’s method. Furthermore, Finlayson
et al. [6] proposed the use of the Planckian locus as a constraint to accom-
plish illumination estimation from uniformly colored surfaces. This Planck-
ian constraint on the illumination chromaticity makes the estimation more ro-
bust, especially for natural scene images. However, the method still has a
few drawbacks. First, the position and the shape of the Planckian locus in the
chromaticity space make the estimation error prone for certain surface colors,
such as blue or yellow. Second, since they include diffuse regions in obtaining
dichromatic lines, the result could become inaccurate. While the fact that their
method does not require reflection separation is one of the advantages, the dif-
fuse cluster, due to noise, usually has a different direction from the specular
cluster; as a result, the dichromatic line can be shifted from the correct one.
Third, like other previous methods, for multicolored surfaces, color segmenta-
tion is required.

Contributions. In this chapter, our goal is to accomplish illumination chro-
maticity estimation for single- and multi-colored surfaces based on a dichro-
matic reflection model. Briefly, the method is as follows. Given a single col-
ored image, we estimate rough highlight regions by thresholding on bright-
ness and saturation values. We transform the pixels of the estimated high-
light regions into inverse-intensity chromaticity space, a novel space which
we introduce. In this space, the correlation between image chromaticity and
illumination chromaticity becomes linear. As a result, based on this linear cor-
relation, we are able to estimate illumination chromaticity for both single- and
multi-colored surfaces without segmenting the color beneath the highlights. In
addition, we use the Hough transform and histogram analysis for accurate and
robust estimation.

In comparison with Lee’s method [17], our method has two advantages:
first, it does not require multicolored surfaces, and second, it does not suf-
fer from the problem of similar surface colors. The method also advances
Lehmann et al.’s method [20], since it does not assume that the surface color
underneath a highlight region is uniform, and it is feasible even for uniformly
colored surfaces. Moreover, unlike Finlayson’s dichromatic method [6], the
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method does not require known camera sensitivity and a strong constraint on
illumination such as blackbody radiator. Basically, this chapter provides two
main contributions. First, it presents a single integrated method that can be
applied for both uniformly colored surfaces and highly textured surfaces. Sec-
ond, it introduces inverse-intensity chromaticity space that clearly describes
the correlation of image chromaticity and illumination chromaticity in a linear
correlation.

Note that, while having ability to work on rough estimate of highlight re-
gions is one of the advantages of our method, the problem of determining
highlight regions is still an open challenging problem. Moreover, although
the method does not require any other intrinsic camera characteristics, such as
sensor sensitivity as well as an assumption of a narrowband sensor, it assumes
that the output of the camera is linear to the flux of incoming light.

The remaining discussion of the chapter is organized as follows. In Section
2, the reflection model of inhomogeneous materials and image color formation
is discussed. In Section 3, we explain the theoretical derivation of the corre-
lation between image chromaticity and illumination chromaticity. In Section
4, we bring the theoretical derivation into a practical computational method to
estimate illumination chromaticity. In Section 5, the distribution in inverse-
intensity chromaticity space is discussed in detail in order to understand the
main factors that determine the robustness of the estimation. We provide a
brief description of the implementation, experimental results and the evalu-
ations for real images in Section 6. Finally in Section 7, we conclude this
chapter.

2. Reflection Model

Optically, most objects can be divided into two categories: homogeneous
and inhomogeneous objects. Homogeneous objects, which have a uniform
refractive index throughout their surface and body, produce specular-only re-
flection [13]. On the contrary, inhomogeneous objects, which have varying
refractive indices in their surfaces and bodies, exhibit diffuse reflection. In ad-
dition, because of the refractive index difference between the object’s surfaces
and the air, inhomogeneous objects also reflect specular reflection [23]. The
amount of reflected light is governed by Fresnel’s law, while the direction of
the specular reflection is relative to the local surface normal. Thus, reflection
of opaque inhomogeneous objects can be modeled as a linear combination of
diffuse and specular reflections, which is known as the dichromatic reflection
model [23] . The model states that the light reflected from an object is a linear
combination of diffuse and specular reflections:

I(λ, x̄) = wd(x̄)Sd(λ, x̄)E(λ, x̄) +ws(x̄)Ss(λ, x̄)E(λ, x̄) (16.1)
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where x̄ = {r, s, t} is the position of a surface point in a three-dimensional
world coordinate system; wd(x̄) and ws(x̄) are the geometrical parameters
for diffuse and specular reflection, respectively; their values depend on the
geometric structure at location x̄. Sd(λ, x̄) is the diffuse spectral reflectance
function; Ss(λ, x̄) is the specular spectral reflectance function; E(λ, x̄) is the
spectral energy distribution function of the illumination.

For most dielectric inhomogeneous objects, the spectral reflectance distribu-
tion of the specular reflection component is similar to the spectral energy distri-
bution of the incident light [19]. Researchers usually assume that both of them
are the same [6, 26, 17, 3]. Lee et al. [19] named this well-known assump-
tion the neutral interface reflection (NIR) assumption. All dichromatic-based
methods, including our method, use this assumption as one of the basic as-
sumptions. As a result, we can set Ss(λ, x̄) as a constant, and Equation (16.1)
becomes:

I(λ, x̄) = wd(x̄)Sd(λ, x̄)E(λ, x̄) + w̃s(x̄)E(λ, x̄) (16.2)

where w̃s(x̄) = ws(x̄)ks(x̄), with ks(x̄) is a constant scalar w.r.t. the wave-
length.

Image Formation. An image taken by a digital color camera can be de-
scribed as:

Ic(x) = wd(x)
∫
Ω
Sd(λ, x)E(λ)qc(λ)dλ+

w̃s(x)
∫
Ω
E(λ)qc(λ)dλ (16.3)

where Ic is the sensor response (RGB pixel values), which in this chapter we
call image intensity, x = {x, y} is the two dimensional image coordinates and
qc is the three-element-vector of sensor sensitivity with index c represents the
type of sensors (r, g, and b). The integration is done over the visible spectrum
(Ω). Note that we ignore camera noise and gain. In addition, we assume a
uniform color of illumination over the input image, so that the illumination
spectral distribution E(λ) becomes independent of the image coordinate (x).
For the sake of simplicity, equation (16.3) is written as:

Ic(x) = wd(x)Bc(x) + w̃s(x)Gc (16.4)

where Bc(x) =
∫
Ω Sd(λ, x)E(λ)qc(λ)dλ; and Gc =

∫
ΩE(λ)qc(λ)dλ. The

first part of the right side of the equation represents the diffuse reflection com-
ponent, while the second part represents the specular reflection component.
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3. Inverse-Intensity Chromaticity Space

In this chapter, chromaticity or also commonly called normalized rgb is
defined as:

σc(x) =
Ic(x)
ΣIi(x)

(16.5)

where ΣIi(x) = Ir(x) + Ig(x) + Ib(x).
By considering the chromaticity definition in the last equation and the image

intensity definition in Equation (16.4), for diffuse-only reflection component
(w̃s = 0), the chromaticity becomes independent from the diffuse geometrical
parameter wd, since it is factored out by using Equation (16.5). We call this
diffuse chromaticity (Λc) , with definition:

Λc(x) =
Bc(x)
ΣBi(x)

(16.6)

On the other hand, for the specular-only reflection component (w d = 0), the
chromaticity is independent of the specular geometrical parameter (w̃s), which
we call specular chromaticity (Γc) :

Γc(x) =
Gc(x)
ΣGi(x)

(16.7)

By considering Equation (16.6) and (16.7), consequently Equation (16.4) can
be written as:

Ic(x) = md(x)Λc(x) +ms(x)Γc (16.8)

where

md(x) = wd(x)ΣBi(x) (16.9)

ms(x) = w̃d(x)ΣGi (16.10)

We can also set Σσi(x) = ΣΛi(x) = ΣΓi(x) = 1, without loss of generality.
Note that we assume that the camera output is linear to the flux of incoming
light intensity; in our method, using only that assumption allows the above
chromaticity definitions to be applied to estimate illumination chromaticity.

3.1 Image Chromaticity and Image Intensity

By substituting each channel’s image intensity in Equation (16.5) with its
definition in Equation (16.8) and by considering pixel-based operation, the
image chromaticity can be written in terms of the dichromatic reflection model:

σc =
mdΛc +msΓc
mdΣΛi +msΣΓi

(16.11)
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Figure 16.1. (a) Synthetic image with a single surface color, (b) projection of the diffuse and
specular pixels into the chromaticity-intensity space, with c representing the green channel.

By deriving the last equation we can obtain the correlation between m s and
md:

ms =
md(Λc − σc)
σc − Γc

(16.12)

From the above correlation, we know that ms is encapsulated in the image
chromaticity (σc). Then, by plugging Equation (16.12) into Equation (16.8),
the correlation between image intensity (Ic) and image chromaticity (σc) can
be described as:

Ic = md(Λc − Γc)(
σc

σc − Γc
) (16.13)

The last equation shows that the correlation between image intensity (I c) and
image chromaticity (σc) is not linear.

By projecting a uniformly colored surface into chromaticity-intensity space,
according to Equation (16.13), the specular pixels will form a curved cluster
(non-linear correlation), as illustrated in Figure 16.1.b. On the other hand, the
diffuse pixels will form a straight vertical line, since the image chromaticity
(σc) which is equal to diffuse chromaticity (Λ c) is independent from image
intensity (Ic).
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3.2 Image Chromaticity and Illumination Chromaticity

By introducing p which we define as p = md(Λc−Γc), we can derive from
Equation (16.13) that:

Ic
σc

=
p

σc − Γc
(16.14)

Since Ic/σc = ΣIi, then the correlation between image chromaticity and illu-
mination chromaticity becomes:

σc = p
1

ΣIi
+ Γc (16.15)

This equation is the core of our method. It shows that by solely calculating
the value of p, we are able to determine the illumination chromaticity (Γ c),
since image chromaticity (σc) and total image intensity (ΣIi) can be directly
observed from the input image. The details are as follows.

If the values of p are constant and the values of ΣI i vary throughout the
image, the last equation becomes a linear equation, and the illumination chro-
maticity (Γc) can be estimated in a straightforward manner by using general
line fitting algorithms. However, in most images, the values of p are not con-
stant, since p depends on md, Λc and Γc. For the sake of simplicity, until the
end of this subsection, we temporarily assume that the values of Λ c are con-
stant, making the values of p depend solely on m d, as Γc has already been
assumed to be constant.

Equation (16.9) states that md = wdΣBi. According to the Lambert’s Law
[16], wd is determined by the angle between lighting direction and surface nor-
mal, while ΣBi is determined by diffuse albedo (kd) and intensity of incident
light (L). The angles between surface normals and light directions depend on
the shape of the object and the light distribution. The angle will be constant if
an object has planar surface and illumination directions are all the same for all
points in the surface. While, if the surface is not planar or the illumination di-
rections are not uniform, then the angle will vary. For a surface with a uniform
color, the value of the diffuse albedo (kd) is constant. The values ofL (intensity
of incident light) are mostly determined by the location of illuminants, which
will be constant if the locations of the illuminants are distant from the surface.
For relatively nearby illuminants, the values of L may vary w.r.t. the surface
point. Considering all these aspects, as a result, in general conditions the value
of md can be either constant or varied. Yet, in most cases the value of md will
be varied because, most shapes of objects in the real world are not planar and
the assumption on uniform illumination direction, in some conditions, cannot
be held.

Consequently, Equation (16.15) poses two problems: first, whether there
are a number of specular pixels that have the same md, and second, whether
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these pixels that have the same md also have different ΣIi. If we consider
a single surface color, then the solution of the first problem depends on w d

and L. In microscopic scale of the real world, the combination of wd and L
could be unique for certain circumstances. Fortunately, in the scale of image
intensity, for some set of surface points, the differences of the combination of
wd and L are small and can be approximated as constant. We can take this
approximation for granted, as current ordinary digital cameras automatically
do it for us as a part of their accuracy limitation. Moreover, in Section 5, we
will explain that the distribution of specular pixels for the same surface color
is localized in a certain area in inverse-intensity chromaticity space, in which
certain points have small difference of p and thus can be grouped together.

The second problem can be resolved by considering Equation (16.8). In
this equation, two specular pixels will have the same m d but different Ic, if
their values of ms are different. Equation (16.10) states that ms = w̃sΣGi. In
Torrance and Sparrow reflection model [28], which is reasonably accurate to
model specularity, w̃s is expressed as:

w̃s = FG
1

cosθr
exp(− α2

2φ2
) (16.16)

where F is the Fresnel reflection, G is the geometrical attenuation factor, θr is
the angle of surface normal and viewing direction, α is the angle between the
surface normal and the bisector of viewing direction and illumination direction,
and φ is the surface roughness. Thus, if the two specular pixels have the same
surface color lit by distant light source and have the same m d which implies
the same p, then ms of both pixels will be different if their values of θ r and α
are different.

Hence, in general conditions, specular pixels can be grouped into a number
of clusters that have the same values of p and different ΣI i. For every group
of pixels that share the same value of md, we can consider p as a constant,
which makes Equation (16.15) become a linear equation, with p as its constant
gradient. These groups of pixels can be clearly observed in inverse-intensity
chromaticity space, with x-axis representing 1/ΣI i and y-axis representing σc,
as illustrated in Figure 16.2.a. Several straight lines in the figure correspond
to several groups of differentmd values (several number of different p: p1,. . . ,
pj ,. . . , pn). These lines intersect at a single point on the y-axis, which is iden-
tical to the illumination chromaticity (Γ c). Figure 16.3.a shows the projection
of all pixels of a synthetic image in Figure 16.1.a into inverse-intensity chro-
maticity space. The horizontal line in the figure represents the diffuse points,
since the image chromaticity of diffuse pixels will be constant regardless the
change of ΣIi. While, the slant cluster represents the specular points. If we
focus on this cluster by removing the diffuse points, according to Equation
(16.15) we will find that a number of straight lines, which compose the cluster,
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Figure 16.2. (a) Sketch of specular points of uniformly colored surface in inverse-intensity
chromaticity space, (b) sketch of specular points of two surface different colors.

Figure 16.3. (a) Diffuse and specular points of a synthetic image (Figure 16.1.a) in inverse-
intensity chromaticity space, with c representing the green channel, (b) the cluster of specular
points which head for illumination chromaticity value in y-axis

head for the value of illumination chromaticity at y-axis, as shown in Figure
16.3.b.

Now we relax the assumption of a uniformly colored surface to handle mul-
ticolored surfaces. Figure 16.2.b. illustrates the projection of two different
surface colors into inverse-intensity chromaticity space. We can observe that
two specular clusters with different values of diffuse chromaticity head for the
same value on the chromaticity axis (Γc). Since we consider only points that
have the same values of p and Γc, then, even if there are many different clus-
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Figure 16.4. (a) Synthetic image with multiple surface colors, (b) specular points in inverse-
intensity chromaticity space, with c representing the green channel.

ters with different values of Λc, as is the case for multicolored surfaces, we can
still safely estimate the illumination chromaticity (Γ c). This means that, for
multicolored surfaces, the estimation process is exactly the same as the case
of a uniformly colored surface. Figure 16.4.b shows the projection of high-
tlighted regions of a synthetic image with two surface colors (Figure 16.4.a)
into inverse-intensity chromaticity space.

4. Computational Method to Estimate Illumination
Chromaticity

To estimate the illumination chromaticity (Γ c) from inverse-intensity chro-
maticity space, we use the Hough transform. Figure 16.5.a shows the transfor-
mation from inverse-intensity chromaticity space into the Hough space, where
its x-axis represents Γc and its y-axis represents p. Since Γc is a normalized
value, the range of its value is from 0 to 1 (0 < Γc < 1).

Using the Hough transform alone does not yet give any solution, because the
values of p are not constant throughout the image, which makes the intersection
point of lines not located at a single location. Fortunately, even if the values of
p vary, the values of Γc are constant. Thus, in principle, all intersections will
be concentrated at a single value of Γc, with a small range of p’s values. These
intersections are indicated by a thick solid line in Figure 16.5.a.

If we focus on the intersections in the Hough space as illustrated in Figure
16.5.b, we should find a larger number of intersections at a certain value of
Γc compared with other values of Γc. The reason is that, in inverse-intensity
chromaticity space, within the range of Γc (0 < Γc < 1), the number of
groups of points that form a straight line heading for certain value of Γ c is
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Figure 16.5. (a) Projection of points in Figure 16.3.b into Hough space, (b) sketch of inter-
sected lines in Hough space.

more dominant than the number of groups of points that form a straight line
heading for other values of Γc.

In practice, we count the intersections in the Hough space based on the num-
ber of points that occupy the same location. The details are as follows. A line
in the Hough space is formed by a number of points. If this line is not inter-
sected by other lines, then each point will occupy a certain location uniquely
(one point for each location). However, if two lines intersect, a location where
the intersection takes place will be shared by two points. The number of points
will increase if other lines also intersect with those two lines at the same lo-
cation. Thus, to count the intersections, we first discard all points that occupy
a location uniquely, as it means there are no intersections, and then count the
number of points for each value of Γc.

As a consequence, by projecting the total number of intersections of each Γ c

into a two-dimensional space, illumination-chromaticity count space, with y-
axis representing the count of intersections and x-axis representing Γ c, we can
robustly estimate the actual value of Γc. Figure 16.6.a shows the distribution of
the count numbers of intersections in the space, where the distribution forms a
Gaussian-like distribution. The peak of the distribution lies at the actual value
of Γc.

5. Discussion

In this section we analyze the distributions of points of highlight regions in
inverse-intensity chromaticity space. This analysis is important, since by un-
derstanding the distribution, we can find out the main factors that determine
the accuracy and robustness of the illumination chromaticity estimation using
the space. Note that, while in this discussion, for the sake of simplicity we as-
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Figure 16.6. Intersection-counting distribution of green channel. The estimated illumination
chromaticity is as follows: Γr = 0.535, Γb = 0.303, Γb = 0.162, the ground-truth values are:
Γr = 0.536, Γb = 0.304, Γb = 0.160.

Figure 16.7. Distribution of specular and diffuse pixels in inverse-intensity chromaticity
space, when md constant.

sume a single surface color, the analysis results can be applied for multicolored
surfaces as well.

First, we analyze the distribution when the values ofm d are constant through-
out the image. For a uniformly colored surface, this constant md makes p be-
come identical for all specular points. As a result, the distribution of the spec-
ular pixels forms a single straight line in inverse-intensity chromaticity space,
as shown in Figure 16.7. AB, in the figure, represents the specular line whose
gradient is determined by the value of p and whose length is represented by
h, i.e., the distance between the brightest specular point and the correspond-
ing diffuse point that has the same p value. Mathematically the value of h is
determined by:
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h =
∣∣∣ mA

s

mA
d (mA

d +mA
s )

√
1 + (mA

d )2(Λc − Γc)2
∣∣∣ (16.17)

where mA
s and mA

d are the ms and md value of the brightest specular pixel at
A. The value of mA

d is identical to the value of mB
d .

Equation (16.17) implies that surface roughness, one of the components of
ms, significantly determines the value of h. Two objects that have the same
shape and surface color, located at the same position, lit by the same illumina-
tion, viewed from the same location (the same value ofmB

d ) will have different
values of h if the surface roughness of the objects is different. The smaller sur-
face roughness (larger value of mA

s ) will produce longer h. On the other hand,
the larger surface roughness (smaller value of mA

s ) will produce shorter h. For
our estimation method, the longer h is better, yet fortunately, even if h is short,
as long as the highlight regions can be obtained, the illumination chromaticity
estimation can be done accurately.

Second, we analyze the distribution when the values of m d vary through-
out the image. If md varies, for uniformly colored surfaces, p will also vary,
which consequently makes specular points in inverse-intensity chromaticity
space form a number of straight lines heading for a unique value in y-axis. If
the change of md is assumed to be continuous (smooth surface), the straight
lines will grow into a cluster as illustrated in Figure 16.8. AB, in the figure,
represents the specular straight line from the brightest specular point to the
corresponding diffuse point that has the same value of p. The length of AB
is represented by h, which the value is also determined by Equation (16.17).
Point C represents the diffuse point that has the dimmest specular pixel (but
its ms is larger than 0). The length of BC is represented by v, which equals
to (Vmax − Vmin). Where Vmax and Vmin are the values of inverse-intensity
of diffuse pixels that have identical p to the dimmest specular pixel and to the
brightest specular pixel, respectively. Note that the value of Vmin is not nec-
essary to be the lowest inverse-intensity value of diffuse pixels, since some
diffuse pixels, in certain conditions, could have inverse-intensity value smaller
than Vmin.

The value of v, which is determined by Vmax and Vmin, does not depends
only on md, but also on several factors that determine the value of ms such
as surface roughness. By considering Torrance-Sparrow reflection model in
Equation (16.16), if the surface has small surface roughness, then the number
of specular pixels (pixels whose ms does not equal to zero) is relatively small,
which could make the diversity of md in highlight regions also small. On
the contrary, if the same surface has large surface roughness, then the number
of specular pixels is relatively large, making the diversity of m d in highlight
regions also possibly large. As a result, since surface roughness affects the
diversity of md in highlight regions, it also affects the value of v. In general
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Figure 16.8. Distribution of specular and diffuse pixels in inverse-intensity chromaticity
space, when md vary.

cases, smaller surface roughness will cause the value of v to be smaller, while
larger surface roughness will cause the value of v to be larger.

Beside knowing the value of h and v, we also need to know the shape of
the boundaries of the distribution. As explained previously, the shape of AB
is a straight line in which the gradient is equal to p of the brightest specular
pixel. The shape ofBC is a straight horizontal line, since for all diffuse pixels,
their image chromaticity values are identical regardless of the change of image
intensity. Unlike both lines, the shape of AC in general cases is not a straight
line. To determine the shape of the line, we need to define the vertical distances
between points at AC and the diffuse horizontal line, which is represented by
d, as shown in the figure. The values of d is determined by:

dj =
∣∣∣ mj

s

mj
d +mj

s

(Λc − Γc)
∣∣∣ (16.18)

where superscript j is the index of specular points located at AC. m j
d is the

diffuse pixel that has identical p to the corresponding specular point located at
AC with index j. From Equation (16.18), we can conclude that the shape of
AC is a curve line, since according to Torrance and Sparrow reflection model
ms is a Gaussian function (Equation (16.16)).

Having understood the factors that determine the distribution of specular
points whenmd varies, if the surface roughness is small, v will be small, hwill
be long, and AC will be more parallel toAB. In this condition, the estimation
using our computational method can be done accurately and robustly. On the
contrary, if the surface roughness is large, then v will be large, h will be short,
and AC will be more parallel to BC , making the estimation in practice less
robust compared with relatively smaller surface roughness.
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6. Experimental Results

We will briefly describe the implementation of the proposed method, and
then present several experimental results on real images, as well as an evalua-
tion of our method.

Implementation. Implementation of the proposed method is quite simple.
Given an image that has highlights, we first find the highlight regions by using
thresholding on image intensity and saturation values. Following the method
of Lehmann et al. [20], we define the thresholding as follows:

Ĩ =
Ir + Ig + Ib

3
> TaĨ

max

S̃ = 1− min(Ir, Ig, Ib)
Ĩ

< TbS̃
max (16.19)

where Ĩmax and S̃max are the largest Ĩ and S̃ in the whole input image, re-
spectively. Ta and Tb are the thresholds of image intensity and saturation,
respectively. In our implementation, we set Ta and Tb from 0.4− 0.6.

This thresholding technique cannot always produce precise highlight re-
gions. Fortunately, in practice our estimation method does not need precise
highlight regions, even if relatively small regions of diffuse pixels are included,
the algorithm could work robustly. Of course, more preciseness is better. Then,
for each color channel, we project the highlight pixels into inverse-intensity
chromaticity space. From this space, we use the conventional Hough trans-
form to project the clusters into Hough space. During the projection, we
count all possible intersections at each value of chromaticity. We plot these
intersection-counting numbers into the illumination-chromaticity count space.
Ideally, from this space, we can choose the tip as the estimated illumination
chromaticity. However, because noise always exists in real images, the result
can be improved by computing the median of a certain percentage from the
highest counts. In our implementation, we use 30% from the highest counted
number.

Note that, first, in our current implementation we estimate three color chan-
nels of illumination chromaticity independently. In fact, since ΣΓ i = 1, we
can solely estimate two color channels instead of three. Second, the problem
of determining highlight regions is still an open challenging problem, and our
method could fail for specific domains that do not follow our thresholding de-
scribed in Equation (16.19).

Experimental Conditions. We have conducted several experiments on real
images, which were taken using a SONY DXC-9000, a progressive 3 CCD dig-
ital camera, by setting its gamma correction at off. To ensure that the outputs
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of the camera are linear to the flux of incident light, we used a spectrometer:
Photo Research PR-650. We examined the algorithm using four types of input,
i.e., uniform colored surfaces, multicolored surfaces, highly textured surfaces,
and a scene multiple objects. We used convex objects to avoid interreflec-
tion, and excluded saturated pixels from the computation. For the evaluation,
we compared the results with the average values of image chromaticity of a
white reference image (Photo Research Reflectance Standard model SRS-3),
captured by the same camera. The standard deviations of these average values
under various illuminant positions and colors were approximately 0.01 ∼ 0.03.

Result on a uniformly colored surface. Figure 16.9.a shows a real im-
age of a head model that has a uniformly colored surface and relatively low
specularity, illuminated by Solux Halogen with temperature 4700K. Under
the illumination, the image chromaticity of the white reference taken by our
camera has chromaticity value: Γr = 0.371,Γg = 0.318,Γb = 0.310.

Figure 16.9.b shows the specular points of the red channel of chromatic-
ity in inverse-intensity chromaticity space. Even though there is some noise,
generally, all points form several straight lines heading for a certain point in
the chromaticity axis. The same phenomenon can also be observed in Figure
16.9.c and Figure 16.9.d. Figure 16.10 shows the intersection-counting distri-
bution in the illumination-chromaticity count space. The peaks of the distri-
bution denote the illumination chromaticity. The result of the estimation was:
Γr = 0.378,Γg = 0.324,Γb = 0.287.

Result on a multi-colored surface. Figure 16.11.a shows a plastic toy
with a multicolored surface. The illumination is Solux Halogen covered with
a green filter. The image chromaticity of the white reference under this illumi-
nant taken by our camera was Γr = 0.298,Γg = 0.458,Γb = 0.244.

Figure 16.11.b, c, d show the specular points of multiple surface colors
in inverse-intensity chromaticity space. From Figure 16.12, we can observe
that, even for several surface colors, the peak of intersection counts was still
at a single value of Γc. The result of the estimation was Γr = 0.319,Γg =
0.439,Γb = 0.212.

Result on highly textured surface. Figure 16.13.a shows a magazine
cover with a complex multicolored surface, which was lit by a fluorescent
light covered with a green filter. The image chromaticity of the white ref-
erence under this illuminant taken by our camera has a chromaticity value
of Γr = 0.283,Γg = 0.481,Γb = 0.236. The result of the estimation was
Γr = 0.315,Γg = 0.515,Γb = 0.207.
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Figure 16.9. (a) Real input image with a single surface color, (b) projection of the red channel
of the specular pixels into inverse-intensity chromaticity space, (c) projection of the green chan-
nel of the specular pixels into inverse-intensity chromaticity space, (d) projection of the blue
channel of the specular pixels into inverse-intensity chromaticity space.
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Figure 16.10. (a) Intersection-counting distribution for red channel of illumination chro-
maticity for image in Figure 16.9, (b) intersection-counting distribution for green-channel, (c)
Intersection-counting distribution for blue channel.
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Figure 16.11. (a) Real input image with multiple surface colors, (b) projection of the red
channel of the specular pixels into inverse-intensity chromaticity space, (c) projection of the
green channel of the specular pixels into inverse-intensity chromaticity space, (d) projection of
the blue channel of the specular pixels into inverse-intensity chromaticity space.
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Figure 16.12. (a) Intersection-counting distribution for the red channel of illumination chro-
maticity for image in Figure 16.11, (b) intersection-counting distribution for the green channel,
(c) intersection-counting distribution for the blue channel.
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Figure 16.13. (a) Real input image of complex textured surface, (b) projection of the red
channel of the specular pixels into inverse-intensity chromaticity space, (c) projection of the
green channel of the specular pixels into inverse-intensity chromaticity space (d) projection of
the green channel of the specular pixels into inverse-intensity chromaticity space.
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Figure 16.14. (a) Intersection-counting distribution for the red channel of illumination chro-
maticity for image in Figure 16.13, (b) intersection-counting distribution for the green channel,
(c) intersection-counting distribution for the blue channel.
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Figure 16.15. (a) Real input image of a scene with multiple objects, (b) result of projecting the
specular pixels into inverse-intensity chromaticity space, with c representing the red channel,
(c) result of projecting the specular pixels, with c representing the green channel, (d) result of
projecting the specular pixels, with c representing the blue channel.

Result on multiple objects. Figure 16.15.a shows a scene with multiple
objects, which was lit by a fluorescent light taken in uncontrolled environment.
The image chromaticity of the white reference under this illuminant taken by
our camera has a chromaticity value of Γr = 0.337,Γg = 0.341,Γb = 0.312.
The result of the estimation was Γr = 0.321,Γg = 0.346,Γb = 0.309.

Evaluation. To evaluate the robustness of our method, we have also con-
ducted experiments on 6 different objects: 2 objects with a single surface color,
1 object with multiple surface colors, and 3 objects with highly textured sur-
faces. The colors of illuminants were grouped into 5 different colors: Solux
Halogen lamp with temperature 4700K, incandescent lamp with temperature
around 2800K, Solux Halogen lamp covered with green, blue and purple fil-
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Figure 16.16. (a) Intersection-counting distribution for the red channel of illumination chro-
maticity for image in Figure 16.13, (b) intersection-counting distribution for the green channel,
(c) intersection-counting distribution for the blue channel.
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Table 16.1. The performance of the estimation method with regard to the image chromaticity
of the white reference

red green blue

average of error 0.0172 0.0141 0.0201
std. dev. of error 0.01 0.01 0.01

Table 16.2. The estimation results using Lehmann et al.’s Database

average of Γr std. dev of Γr average of Γg std. dev of Γg

unclipped, white ill. 0.320 0.02 0.329 0.02
clipped, white ill. 0.318 0.02 0.332 0.02
unclipped, yellow ill. 0.479 0.02 0.411 0.02
clipped, yellow ill. 0.469 0.02 0.399 0.02

ters. The illuminants were arranged at various positions. The total of im-
ages in our experiment was 43 images. From these images, we calculated the
errors of the estimation by comparing them with the image chromaticity of
the white reference, which are shown in Table 16.1. The errors are consider-
ably small, as the standard deviations of the reference image chromaticity are
around 0.01 ∼ 0.03. In addition, we also used Lehmann et al.’s database [20]
to evaluate the accuracy and robustness of our method. The database contains
various colors of multiple objects. Table 16.2 shows the result of our estima-
tion. Compared to Lehmann et al. method [20], the method is more stable for
general conditions of illumination colors and input images (unclipped/clipped
images).

7. Conclusion

We have introduced a novel method for illumination chromaticity estima-
tion. The proposed method can handle both uniform and non-uniform surface
color objects. Given crude highlight regions, the method can estimate illu-
mination color without requiring color segmentation. It is also applicable for
multiple objects with various colored surfaces, as long as there are no inter-
reflections. In this chapter, we have also introduced inverse-intensity chro-
maticity space to analyze the relationship between illumination chromaticity
and image chromaticity. Advantages of the method include: first, the capabil-
ity to cope with either single surface color or multiple surface colors; second,
color segmentation inside highlighted regions and intrinsic camera character-
istics are not required; third, the method does not use the strong constraints
on illumination, which several existing color constancy methods use, such as



Color Constancy through Inverse-Intensity Chromaticity Space 349

blackbody radiator. The experimental results have shown that the method is
accurate and robust even for highly textured surfaces.
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Chapter 17

SEPARATING REFLECTION COMPONENTS OF
TEXTURED SURFACES USING A SINGLE IMAGE

Robby T. Tan and Katsushi Ikeuchi

Abstract In inhomogeneous objects, highlights are linear combinations of diffuse and
specular reflection components. A number of methods have been proposed to
separate or decompose these two components. To our knowledge, all meth-
ods that use a single input image require explicit color segmentation to deal
with multicolored surfaces. Unfortunately, for complex textured images, current
color segmentation algorithms are still problematic to segment correctly. Con-
sequently, a method without explicit color segmentation becomes indispensable,
and this chapter presents such a method. The method is based solely on colors,
particularly chromaticity, without requiring any geometrical information. One
of the basic ideas is to iteratively compare the intensity logarithmic differenti-
ation of an input image and its specular-free image. A specular-free image is
an image that has exactly the same geometrical profile as the diffuse component
of the input image, and that can be generated by shifting each pixel’s intensity
and maximum chromaticity non-linearly. Unlike existing methods using a single
image, all processes in the proposed method are done locally, involving a maxi-
mum of only two neighboring pixels. This local operation is useful for handling
textured objects with complex multicolored scenes. Evaluations by comparison
with the results of polarizing filters demonstrate the effectiveness of the proposed
method.

1. Introduction

Separating diffuse and specular reflection components is an essential subject
in the field of computer vision. Many algorithms in this field assume perfect
diffuse surfaces and deem specular reflections to be outliers. However, in the
real world, the presence of specular reflection is inevitable, since there are
many dielectric inhomogeneous objects which have both diffuse and specu-
lar reflections. To properly acquire the diffuse only reflections, a method to
separate the two components robustly and accurately is required. Moreover,
once this separation has been accomplished, the specular reflection component
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can become advantageous since it conveys useful information of the surface
properties such as microscopic roughness.

Theoretically, when a bundle of light rays enters an inhomogeneous opaque
surface, some of the rays will immediately reflect back into the air, while the
remainder will penetrate the body of the object. Some of these penetrating light
rays will go through the body; the others will reflect back onto the surface and
then into the air. The immediately reflected light rays are called specular or
interface reflections, while those that have penetrated and then reflected back
into the air are called diffuse or body reflections . Besides the two reflec-
tions, there is another reflection called specular spike [2, 21]. However, since
its presence in inhomogeneous objects is very minor, we can ignore it. Thus,
highlights which we usually observe in inhomogeneous objects are combina-
tions of diffuse and specular reflection components.

In order to separate the two reflection components, it is necessary to know
the optical differences between diffuse and specular reflections. Principally
there are three differences. First, the reflections have different degrees of po-
larization (DOP) , where the DOP represents the ratio of the light being polar-
ized. For unpolarized incident light, the DOP of specular reflection is larger
than that of diffuse reflection for most angles of incidence light, meaning that
specular reflection is generally more polarized than diffuse reflection [19, 3,
30, 32, 20]. Second, although recently a number of researchers [29, 22, 31]
have introduced more complex models, the intensity distribution of diffuse re-
flections approximately follows Lambert’s Law [12]. In contrast, the intensity
distribution of specular reflections from the basis of geometrical optics follows
the Torrance-Sparrow reflection model [28] and, from the basis of physical op-
tics, follows the Beckmann-Spizzichino reflection model [2]. Third, for most
inhomogeneous objects, the spectral power distribution (SPD) of specular re-
flection is determined by the object’s interface spectral reflectance, which is
mostly constant throughout the wavelength of visible spectrum, causing the
SPD of specular reflections to be similar to the illumination’s SPD [13], while
the SPD of diffuse reflection is determined by the object’s body spectral re-
flectance. This spectral power distribution (color) independence of diffuse and
specular reflections was clearly described in the dichromatic reflection model
proposed by Shafer [25].

1.1 Previous Work

Based on the three differences mentioned above, many methods have been
developed for separating reflection components. Wolff et al. [32] used a po-
larizing filter to separate reflection components from gray images. The main
idea of their method is that, for most incident angles, diffuse reflections tend to
be less polarized than the specular reflections. Nayar et al. [20] extended this
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work by considering colors instead of using the polarizing filter alone. They
identified specular pixels and the illumination color vector in RGB space by
utilizing intensity variation produced by a polarizing filter. A specular pixel,
which is partially composed of a specular reflection component, will have a
different intensity if the polarization angle of the filter is changed. The com-
bination of polarizing filter and colors is even for textured surfaces; however,
utilizing such an additional filter is impractical in some circumstances. Sato
et al. [24] introduced a four-dimensional space, temporal-color space, to ana-
lyze the diffuse and specular reflections based on colors and image intensity.
While this method has the ability to separate the reflection components locally,
since each location contains information of diffuse and specular reflections,
it requires dense input images with variation of illuminant directions. Lee et
al. [14, 15] introduced color histogram differencing to identify specularities.
The key idea is that colors of diffuse pixels are independent of the changing of
viewing positions, while colors of specular pixels are dependent on it. Later,
Lin et al. [17] extended this method by adding multibaseline stereo. Crimin-
isi et al. [4] developed an epipolar plane image (EPI) - based method to de-
tect specularities. They found that, in two-dimensional spatio-temporal space,
highlights’ straight lines have larger gradients than diffusers’ straight lines. Lin
et al. [18], unlike previous methods, introduced a method using sparse images
(at least two images) under different illumination positions. They suggested
an analytical method that combines the finite dimensional basis functions [23]
and a dichromatic model to form a closed form equation, by assuming that
the sensor sensitivity is narrowband. This method can separate the reflection
component locally.

The aforementioned methods are considerably effective in separating reflec-
tion components; unfortunately, for many applications, using multiple images
is impractical. Shafer [25], who introduced the dichromatic reflection model,
was one of the early researchers who used a single colored image. He pro-
posed a separation method based on parallelogram distribution of colors in
RGB space. Klinker et al. [11] then extended this method by introducing
a T-shaped color distribution. This color distribution represents body and il-
lumination color vectors. By separating these vectors, the reflection equation
becomes a closed form equation and directly solvable. Unfortunately, for many
real images, this T shape is hardly extractable due to noise, etc. Bajscy et al.
[1] proposed an approach that introduced a three dimensional space composed
of lightness, saturation and hue. In their method, the input image has to be
neutralized to pure-white illumination using a linear basis functions operation.
For every neutralized pixel, the weighting factors of the surface reflectance
basis functions are projected into the three-dimensional space, where specular
and diffuse reflections are identifiable due to the difference of their saturation
values.
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1.2 Contributions

All the above methods that use a single input image require color segmenta-
tion to deal with multicolored images. For non-complex multicolored images,
current segmentation algorithms can produce reasonably correct results. How-
ever, in the real world that usually has complex scenes and textured surfaces,
these algorithms are still problematic. To overcome this problem, we present a
method that uses local operation, which consequently does not require explicit
color segmentation. Briefly, our method is as follows.

Given a single colored image, we normalize the illumination color using
known illumination chromaticity, which produces an image that has a pure
white specular component. Using this image, we generate a specular-free im-
age by simply shifting the intensity and maximum chromaticity of the pixels
non-linearly while retaining their hue. This image has diffuse geometry ex-
actly identical to the diffuse geometry of the input image; the difference is
only in their surface colors. Thus, by using intensity logarithmic differentiation
on both the normalized image and its specular-free image, we can determine
whether the normalized image contains only diffuse pixels. This ability plays
an important role as a termination condition in our iterative framework, which
removes specular components step by step until no specular reflection exists in
the image. All processes are done locally, involving a maximum of only two
neighboring pixels.

In comparison with the existing methods that use a single input image, the
proposed method offers some advantages: First, separation is done without re-
quiring explicit segmentation. Klinker et al. [11] used color segmentation to
obtain the T-shaped distribution for each surface color, thereby implying that
failure in the segmentation would cause failure in identifying the T-shape. Ba-
jcsy et al. [1] used region-growing algorithms for two steps of segmentation:
hue-based segmentation and saturation-based segmentation. The main draw-
back of the hue-based segmentation is that, when two neighboring regions have
different saturation but the same hue, the two different regions will be deemed
as a single region, causing incorrect identification of the saturation value of dif-
fuse pixels. Although they have proposed a solution for the problem, they did
not have any suggestion on how the solution could be united into one whole
framework. The solution is not simple; and, if it is applied to general cases
where the problem might not occur, it will consume significant computational
time and affect the robustness of the method. Moreover, the success of the
method depends on the success of clustering the hues of specular pixels. If the
specular pixels are mistakenly grouped into different hues, then the separation
will produce incorrect results. Unlike the existing methods, our approach is
based on chromaticity difference of two-neighboring pixels to detect color dis-
continuities, where the same hue but different saturation surfaces is no longer a
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problem. Although detecting color discontinuities is, in general, similar to the
problem of color segmentation, in our framework we consider only local color
discontinuity, in which the success of reflection separation does not necessarily
imply the success of detecting global (all) color discontinuities. In other words,
even if we mistakenly deem a number of two-neighboring pixels to be color
discontinuities, it does not always affect the end result of separation. Second,
the method uses simple and hands-on illumination color normalization. Unlike
Bacjsy et al.’s neutralization that uses linear basis functions, we apply the nor-
malization by simply dividing the input image with illumination chromaticity
(without assuming narrow-band sensor). Third, we introduce specular-free im-
age that has a geometrical profile identical to diffuse components of the input
image and is free from the presence of highlights. This image could be useful
for many algorithms in computer vision that do not need the object’s actual
color but suffer from highlights.

To separate reflection components correctly, our method requires several as-
sumptions. First, diffuse pixels always occur in each color region regardless of
their quantity. Second, the color constancy method can estimate illumination
chromaticity correctly. Third, the surface color is chromatic (R �= G �= B),
meaning the surface color is not a white, gray, or black color. These assump-
tions, particularly the last assumption, are commonly used by all methods that
have only a single input image, since most of them are basically based on color;
and, achromatic pixels simply mean that they have no color information.

1.3 Overview

The remainder of the chapter is organized as follows. In Section 2, we dis-
cuss the dichromatic reflection model, image color formation, chromaticity and
normalization. In Section 3, we elaborate on a mechanism to obtain diffuse re-
flection component by deriving the correlation between image maximum chro-
maticity and image intensity, which we call specular-to-diffuse mechanism.
Based on the mechanism, we describe a technique to generate a specular-free
image and prove that the image has an identical geometrical profile to that of
the input image. In Section 4, we explain the separation method derived from
the specular-to-diffuse mechanism and specular-free image in detail. In Sec-
tion 5, we provide a description of the implementation of the method and its
algorithm. In Section 6, we discuss the effects of inaccurate estimation of illu-
mination chromaticity in generating a specular-free image. We present several
experimental results and evaluations for real images in Section 7. Finally, we
offer our conclusions in Section 8.
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2. Reflection Model

Image Formation. Most inhomogeneous objects, such as those made of
plastics, acrylics, etc., exhibit both diffuse and specular reflections. The diffuse
reflection is due to the varying refractive indices in the objects’ surfaces and
bodies, while the specular reflection is mainly due to the refractive index dif-
ference between objects’ surfaces and the air. Considering these two reflection
components, Shafer [25] introduced the dichromatic reflection model , which
states that reflected lights of inhomogeneous objects are linear combinations
of diffuse and specular reflection components. As a result, an image’s pixel of
inhomogeneous objects taken by a digital color camera can be described as:

⎡
⎣ Ir(x)
Ig(x)
Ib(x)

⎤
⎦ =

⎡
⎣ wd(x)

∫
Ω S(λ, x)E(λ)qr(λ)dλ+ ws(x)

∫
ΩE(λ)qr(λ)dλ

wd(x)
∫
Ω S(λ, x)E(λ)qg(λ)dλ+ ws(x)

∫
ΩE(λ)qg(λ)dλ

wd(x)
∫
Ω S(λ, x)E(λ)qb(λ)dλ+ ws(x)

∫
ΩE(λ)qb(λ)dλ

⎤
⎦(17.1)

in color vector we express as:

I(x) = wd(x)
∫
Ω
S(λ, x)E(λ)q(λ)dλ+ ws(x)

∫
Ω
E(λ)q(λ)dλ (17.2)

where I = {Ir, Ig, Ib} is the color vector of image intensity or camera sensor.
The spatial parameter, x = {x, y}, is the two dimensional image coordinates.
q = {qr, qg, qb} is the three-element-vector of sensor sensitivity. w d(x) and
ws(x) are the weighting factors for diffuse and specular reflections, respec-
tively; their values depend on the geometric structure at location x. S(x, λ) is
the diffuse spectral reflectance function, while E(λ) is the spectral power dis-
tribution function of illumination. E(λ) is independent of the spatial location
(x) because we assume a uniform illumination color. The integration is done
over the visible spectrum (Ω). Note that we ignore the camera gain and cam-
era noise in the above model, and assume that the model follows the neutral
interface reflection (NIR) assumption [13], i.e., the color of specular reflection
component equals the color of the illumination. For the sake of simplicity,
Equation (17.2) can be written as:

I(x) = wd(x)B(x) + ws(x)G (17.3)

where B(x) =
∫
Ω S(λ, x)E(λ)q(λ)dλ, and G =

∫
ΩE(λ)q(λ)dλ. The first

part of the right side of the equation represents the diffuse reflection compo-
nent, while the second part represents the specular reflection component.
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Chromaticity. Besides the dichromatic reflection model, we also use chro-
maticity or normalized rgb , which is defined as:

σ(x) =
I(x)

Ir(x) + Ig(x) + Ib(x)
(17.4)

where σ = {σr, σg, σb}. Based on the equation, for the diffuse-only reflection
component (ws = 0), the chromaticity will be independent from the diffuse
weighting factor wd. We call this diffuse chromaticity (Λ) with definition:

Λ(x) =
B(x)

Br(x) +Bg(x) +Bb(x)
(17.5)

where Λ = {Λr,Λg,Λb}. On the other hand, for the specular-only reflection
component (wd = 0), the chromaticity will be independent from the specular
weighting factor (ws), and we call it specular or illumination chromaticity (Γ):

Γ =
G

Gr +Gg +Gb
(17.6)

where Γ = {Γr,Γg,Γb}. Consequently, with regard to Equation (17.5) and
(17.6), Equation (17.3) becomes able to be written in term of chromaticity:

I(x) = md(x)Λ(x) +ms(x)Γ (17.7)

where

md(x) = wd(x)[Br(x) +Bg(x) + Bb(x)] (17.8)

ms(x) = ws(x)(Gr +Gg +Gb) (17.9)

As a result, we have three types of chromaticity: image chromaticity (σ), dif-
fuse chromaticity (Λ) and illumination chromaticity (Γ). The image chro-
maticity can be directly computed from the input image using Equation (17.4).
In addition, from their definitions we can obtain (σ r +σg +σb) = (Λr+Λg +
Λb) = (Γr + Γg + Γb) = 1.

Based on the dichromatic reflection model and chromaticities definitions
derived above, we describe our goal: given image intensities (I(x)) whose
illumination chromaticity (Γ) is known (estimated by using a color constancy
method); we intend to decompose them into their reflection components:
md(x)Λ(x) and ms(x)Γ.

Normalization. In our method, to separate reflection components correctly,
the color of the specular component must be pure white (Γr = Γg = Γb).
However, in the real world, finding a pure white specular component is almost
impossible. Most light sources are not wavelength-independent. Moreover,
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even if the light source is wavelength- independent, because of different sensi-
tivities in color filters, the intensity value of the specular component for every
color channel becomes varied, depending on camera sensitivity. Consequently,
to obtain a pure white specular component, we need to normalize the input
image. Here we use a simple method of normalization that does not require
approximated linear basis functions such as in [1] and also does not assume
narrowband sensor sensitivity.

Our normalization requires the value of Γ (the illumination chromaticity),
which can be obtained by using a color constancy algorithm that can handle
textured surfaces such as [26, 16]. We describe the estimated illumination
chromaticity as Γest, with Γest = {Γestr ,Γestg ,Γestb }, which enables the nor-
malized image intensity to be expressed as:

I′(x) = m′
d(x)Λ′(x) +m′

s(x)
1
3

(17.10)

where I′(x) = I(x)
Γest , the normalized image intensity. m′

d = md

[
Λr(x)
Γest

r
+

Λg(x)
Γest

g
+ Λb(x)

Γest
b

]
, Λ′ is the chromaticity of

(
md

Λ(x)
Γest

)
, which we call the nor-

malized diffuse chromaticity. We assume Γ
Γest = {1, 1, 1}, as a result the nor-

malized specular chromaticity (Γ′) equals {1/3, 1/3, 1/3}, and m′
s = 3ms.

The above normalization makes the specular reflection component become a
scalar value.

Later, when the separation is done, to obtain the actual reflection compo-
nents, we need to renormalize the separated components, simply by multiply-
ing them

(
m′
d(x)Λ′(x) and m′

s(x) 1
3

)
with Γest:

md(x)Λ(x) =
[
m′
d(x)Λ′(x)

]
Γest (17.11)

ms(x)Γ =
[
m′
s(x)

1
3

]
Γest (17.12)

3. Specular-to-diffuse mechanism

To separate the reflection components, we basically rely on the specular-to-
diffuse mechanism. This mechanism is derived from maximum chromaticity
and intensity values of diffuse and specular pixels. Following the chromaticity
definition in Equation (17.4) we define maximum chromaticity as:

σ̃′(x) =
max(I ′r(x), I ′g(x), I ′b(x))
I ′r(x) + I ′g(x) + I ′b(x)

(17.13)

where {I ′r(x), I ′g(x), I ′b} are obtained from a normalized image (I′ in Equa-
tion (17.10)). Identically, we can express σ̃ ′(x) = max(σ′r(x), σ′g(x), σ′b(x)),
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Figure 17.1. (a) Synthetic image. (b) Projection of the synthetic image pixels into the maxi-
mum chromaticity intensity space.

where σ′ is the image chromaticity of the normalized image. Unlike chro-
maticity (σ′), maximum chromaticity (σ̃′) is a scalar value.

For a uniformly colored surface that has been normalized, in a two-
dimensional space: maximum chromaticity intensity space, where its x-axes
representing σ̃ ′ and its y-axes representing Ĩ ′, with Ĩ ′ = max(I ′r, I ′g, I ′b), the
diffuse points’ maximum chromaticities of the image are always larger those
of the specular points, due to the maximum chromaticity definition (17.13).
Mathematically, it can be proved by comparing the values of maximum chro-
maticity (σ̃ ′) of diffuse and specular pixels defined in Equation (17.10):

σ̃′diff > σ̃′spec (17.14)

Λ̃′

Λ′
r + Λ′

g + Λ′
b

>
m′
dΛ̃

′ + 1
3m

′
s

m′
d(Λ′

r + Λ′
g + Λ′

b) +m′
s

(17.15)

Λ̃′ >
1
3

(17.16)

where Λ̃′ = max(Λ′
r,Λ

′
g,Λ

′
b), the Λ′

c of Ĩ ′ (with index c is identical to the

color channel of Ĩ ′), and (Λ′
r + Λ′

g + Λ′
b) = 1. Thus, since the values of Λ̃′ for

chromatic pixels are always larger than 1/3, the last equation holds true.
In addition, using either the chromaticity or the maximum chromaticity def-

inition, the chromaticity values of the diffuse points will be constant, regard-
less of the variance of m′

d(x). In contrast, the chromaticity values of specu-
lar points will vary with regard to the variance of m ′

s(x), as shown in Figure
17.1.b. From these different characteristics of specular and diffuse points in the
maximum chromaticity intensity space, we devised specular-to-diffuse mech-
anism. The details are as follows.



362 DIGITALLY ARCHIVING CULTURAL OBJECTS

Figure 17.2. Specular-to-diffuse mechanism. The intersection point is equal to the diffuse
component of the specular pixel. By knowing diffuse chromaticity from the diffuse pixel, the
intersection point can be obtained.

When two normalized pixels, a specular pixel I ′(x1) and a diffuse pixel
I′(x2), with the same Λ′ are projected into the maximum chromaticity in-
tensity space, the location of the diffuse point will be at the right side of the
specular point since, diffuse’s maximum chromaticity is larger than specular’s
maximum chromaticity. Then, by subtracting every color channel of the spec-
ular pixel’s intensity using a small scalar number iteratively, and projecting the
subtracted values into the maximum chromaticity intensity space, we will find
that the projected points form a curved line in the space, as shown in Figure
17.2. This curved line follows the following equation (see Appendix A for
complete derivation):

Ĩ ′(x) = m′
d(x)(Λ̃′(x)− 1/3)(

σ̃′(x)
σ̃′(x)− 1/3

) (17.17)

The last equation proves that the distribution of specular points in maximum
chromaticity intensity space forms a curved cluster if the values of m ′

d vary
(Figure 17.1.b).

In Figure 17.2, we can observe that a certain point in the curved line inter-
sects with a vertical line representing the maximum chromaticity of the diffuse
point. At this intersection,m ′

s of the specular pixel equals zero, since the max-
imum chromaticity of the subtracted specular pixel becomes identical to that
of the diffuse pixel. As a consequence, the intersection point becomes crucial,
since it indicates the diffuse component of the specular pixel ( m ′

d(x1)Λ′). To
obtain this value, we first compute m ′

d(x1), which can be derived from Equa-
tion (17.17):

m′
d(x1) =

Ĩ ′(x1)[3σ̃′(x1)− 1]
σ̃′(x1)[3Λ̃′(x1)− 1]

(17.18)
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Figure 17.3. (a) Synthetic image with multicolored surface. (b) Projection of the synthetic
image pixels into the maximum chromaticity intensity space.

To compute m′
d we need to know the value of Λ̃′(x1). This value can be ob-

tained from the diffuse pixel since, if the two pixels have the same diffuse
chromaticity, then Λ̃′(x1) = Λ̃′(x2) = σ̃′(x2). Upon knowing the value
of m′

d(x1), we can directly obtain the value of m ′
s(x1), since m′

s(x1) =
(I ′r(x1) + I ′b(x1) + I ′g(x1))−m′

d(x1). As a result, the normalized diffuse re-
flection component of the specular pixel is able to obtain:
m′
d(x1)Λ′(x1) = I′(x1)− m′

s(x1)
3 .

To correctly compute the diffuse component (m ′
d(x1)Λ′), the mechanism

needs a linearity between the camera output and the flux of incoming light
intensity. Moreover, in the case of the above two pixels, the mechanism can
successfully obtain the reflection components because the diffuse chromaticity
is known. Unfortunately, given a multicolored image as shown in Figure 17.3,
the diffuse chromaticity for each color is unknown; this, in fact, is the main
problem of separating reflection components by using a single multicolored
image.

Although we cannot directly use specular-to-diffuse mechanism to separate
the reflection components, the mechanism is still usefull, since it tells us that
the diffuse component of a specular pixel lies somewhere in the curved line
(Equation (17.17)). Furthermore, by using the mechanism, we are also able to
generate a specular-free image, which is one of the crucial components in our
proposed method.

3.1 Specular-Free Image

To generate a specular-free image , we simply set the diffuse maximum
chromaticity (Λ̃′ in Equation (17.18)) equal to an arbitrary scalar value (1/3 <
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Figure 17.4. (a) Shifting all pixels into arbitrary Λ̃′. (b) Specular-free image.

Figure 17.5. (a) Normalized input image. (b) Specular-free image by setting Λ̃′ = 0.5. The
specular components are perfectly removed, but the surface color is different.

Λ̃′ ≤ 1), for all pixels regardless of their color. For instance, we set Λ̃′ equal to
0.5 for image in Figure 17.1.a, which implies that the distribution of the points
in maximum chromaticity-intensity space becomes a vertical line as shown in
Figure 17.4.a. As a result, we can obtain an image that does not have specular
reflections (Figure 17.4.b). Figure 17.5.a shows a real image of a multicolored
scene. By setting Λ̃′ = 0.5 for all pixels, we can obtain an image that is
geometrically identical to the diffuse component of the input image (Figure
17.5.b). The difference of both is solely in their surface colors.
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This technique can successfully remove highlights mainly because the sat-
uration values of all pixels are made constant regarding to the maximum chro-
maticity, while retaining their hue [5, 1]. It is well known that, if the specular
component’s color is pure white, then diffuse and specular pixels that have the
same surface color will have identical values of hue, with the hue defined as
[8] :

H = cos−1

[ 1
2

[
(I ′r − I ′g) + (I ′r − I ′b)

]
[
(I ′r − I ′g)2 + (I ′r − I ′b)(I ′g − I ′b)

]1
2

]
(17.19)

and difference saturation values, with saturation is defined as [8] :

S = 1−
[ 3
I ′r + I ′g + I ′b

min(I ′r, I
′
g, I

′
b)
]

(17.20)

In our dichromatic reflection model (Equation 17.10), different saturation
means different value ofm′

s (the weighting factor of specular component), and
the same hue means the same value of Λ′ (the normalized diffuse chromatic-
ity). As a consequence, in maximum chromaticity intensity space, for diffuse
points with the same Λ ′, both saturation and hue values will be constant (since
their m′

s values equal zero) while, for specular points with the same Λ ′, their
saturation values will vary (since their m ′

s values vary), and the hue values
will be constant. Thus, shifting all points in maximum chromaticity intensity
space into a certain arbitrary value using a specular-to-diffuse mechanism is
identical to making all points’ saturation values constant, but retaining their
hue values intact. These constant-saturation values can make the highlights
disappear from the image.

Formally, we describe the specular-free image as:

I̊(x) = m̊d(x)Λ̊(x) (17.21)

where I̊ = {I̊r, I̊g, I̊b} is the image intensity of the specular-free image, Λ̊ =
{Λ̊r, Λ̊g, Λ̊b} is the diffuse chromaticity, and m̊d is the diffuse weighting factor.
In the following, we will prove that m̊d has the same geometrical profile tom′

d
(the diffuse weighting factor of normalized image).

According to Equation (17.10) a normalized diffuse pixel is described as
I′(x) = m′

d(x)Λ′(x). If we apply the specular-to-diffuse mechanism to the
pixel by substituting the value of Λ̃′ in Equation (17.18) where Λ̃′ =
max(Λ′

r,Λ′
g,Λ′

b) with an arbitrary maximum chromaticity whose value equals

max(Λ̊r, Λ̊g, Λ̊b), then the equation becomes:

m̊d(x) =
Ĩ ′(x)[3σ̃′(x)− 1]

σ̃′(x)[3max(Λ̊r, Λ̊g, Λ̊b)− 1]
(17.22)
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Figure 17.6. Basic Flow of the proposed method.

Since Ĩ ′(x) = m′
d(x)Λ̃′(x), and for diffuse pixels Λ̃′(x) = σ̃′(x), by defining

Λ̃new = max(Λ̊r, Λ̊g, Λ̊b), we can obtain:

m̊d(x) = m′
d(x)

3Λ̃′(x)− 1
3Λ̃new − 1

(17.23)

Λ̃new is independent of the spatial parameter (x), since we use the same value
Λ̃new for all pixels regardless of their colors. Note that the same value of Λ̃new

does not necessarily imply the same value Λ̊. As a result, for diffuse pixels

with the same diffuse chromaticity (the same surface color), 3Λ̃′(x)−1

3Λ̃new−1
will be

constant, thereby enabling us to describe the image intensity of specular-free
image as:

I̊(x) = m′
d(x)k(x)Λ̊(x) (17.24)

where k(x) = 3Λ̃′(x)−1

3Λ̃new−1
. For pixels with the same diffuse chromaticity (Λ ′),

k is a constant scalar value. For the proof for specular pixels, see Appendix
B. Therefore, since m̊d(x) = m′

d(x)k, the diffuse geometrical profile of the
specular-free image is identical to the geometrical profile of both the normal-
ized image (17.10) and the input image (17.7).

Generating a specular-free image using specular-to-diffuse mechanism is
a one-pixel-based operation that requires only a single colored image without
any segmentation process. As a result, it is simple and could be useful for many
applications in computer vision that do not need actual surface color but suffer
from highlights. Note that caution should be taken in using a specular-free
image, particularly for applications that require evaluating color discontinuities
since, in the case of two adjacent colors that have the same hue but different
saturation, color discontinuities of the two colors will disappear.

4. Separation Method

Flowchart in Figure 17.6 illustrates the basic idea of our proposed method.
First, given a normalized image, a specular-free image is generated. Based on
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these two images (the normalized image and the specular free image), the ’dif-
fuse verification’ verifies whether the normalized image has diffuse-only pix-
els. If it does, then the processes terminate. Otherwise, the ’specularity reduc-
tion’ will decrease the intensity of the specular pixels of the normalized image.
After that, the diffuse verification verifies once again whether the normalized
image has diffuse-only pixels. These two processes are done iteratively until
there is no specularity in the normalized image. All processes require only two
adjacent pixels to accomplish their task; and, this local operation is indispens-
able in dealing with highly textured surfaces. The following subsections will
show the detail of the two processes.

4.1 Diffuse Pixels Verification

Intensity Logarithmic Differentiation. Given one colored pixel, to deter-
mine whether it is diffuse or specular pixel is completely an ill posed problem.
Since in a linear equation such as equation (17.10), whetherm ′

s is equal to zero
is undeterminable from a single I ′. In this section, instead of a single pixel, we
will show that two-neighboring pixels can be the minimum requirement to de-
termine whether both of them are diffuse pixels.

We base our technique on intensity logarithmic differentiation of the nor-
malized image and the specular free image. Considering a diffuse pixel which
is not located at color discontinuities in Figure 17.5.a, we can describe it as:
I′(x1) = m′

d(x1)Λ′. The spatial parameter (x1) is removed from Λ′, since
the pixel is not located at color discontinuities. If we apply logarithmic and
then differentiation operation on this pixel, the equation becomes:

log(I′(x1)) = log(m′
d(x1)) + log(Λ′) (17.25)

d

dx
log(I′(x1)) =

d

dx
log(m′

d(x1)) (17.26)

For the same pixel’s location (x1), we can obtain a corresponding pixel in the
specular-free image. We describe it as: I̊(x1) = m′

d(x1)kΛ̊, where k and
Λ̊ are independent from spatial parameter. Thus, using the same operations,
logarithmic and differentiation, we can obtain:

log(̊I(x1)) = log(m′
d(x1)) + log(k) + log(Λ̊) (17.27)

d

dx
log(̊I(x1)) =

d

dx
log(m′

d(x1)) (17.28)

The last equation has the same result to Equation (17.26). It means that the
differential logarithmic of the diffuse pixels of the normalized image (Equa-
tion (17.26)) and the differential logarithmic of the corresponding pixels in the
specular free image (Equation (17.28)) are exactly identical.
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As a result, based on the intensity logarithmic differentiation operation, we
become able to determine whether two-neighboring pixels are diffuse pixels:

Δ(x) = dlog(I′(x))− dlog(̊I(x)) (17.29)

Δ(x)
{

= 0 : diffuse
�= 0 : specular or color discontinuity

(17.30)

As shown in Equation (17.30), for pixels located at color discontinuities,
there is still an ambiguity between specular and color discontinuity pixels.
Since using two neighboring pixels that have different surface color, the differ-
ence of the logarithmic differentiation does not equal zero, although the pixels
are diffuse pixels. Theoretically, by extending the number of pixels into at
least four neighboring pixels, it is possible to distinguish them. However, in
real images, camera noise and surface noise (surface variance) [9, 27] make
such identification become error-prone; consequently, to deal with the color
discontinuity problem, we need another more robust analysis which will be
described in the next subsection.

Color Discontinuity. A number of methods have been proposed to solve
the color discontinuity problem, which is also known as the problem of mate-
rial changes [10, 7]. Unlike those methods, we use a simple chromaticity-based
method to handle the problem. We use the below decision rule:

(Δr > thR and Δg > thG)
{

true : color discontinuity
false : otherwise

(17.31)

where thR and thG are the small scalar numbers. Δr(x) = σ ′
r(x)−σ′r(x− 1)

and Δg(x) = σ′
g(x) − σ′g(x− 1), with σ′

r = I′r
I′r+I′g+I′

b
and σ′

g = I′g
I′r+I′g+I′

b
.

This simple technique is similar to the method proposed by Funt et al. [6].
For two neighboring pixels, this simple chromaticity thresholding is suf-

ficient since when two neighboring pixels have the same surface color, their
chromaticity difference is small, even for specular pixels. This is one of the ad-
vantages of our local, two-neighboring-pixels operation. Moreover, the above
thresholding can also solve the problem of two adjacent objects that have the
same hue but different saturation, as long as the saturation difference is not
less than that of the thresholds. Fortunately, in practice, even if the saturation
difference is less than the thresholds, it does not affect the result much; since it
implies that the objects have almost the same color, so that it is unnecessary to
distinguish them. In addition, we have no problem when the above threshold-
ing wrongly deems the shadow boundary to be a color discontinuity, since we
have nothing to do with shadow.
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Figure 17.7. (a) Three points in an image. (b) The three points in spatial-intensity space. (c)
The three points in maximum chromaticity intensity space.

4.2 Specularity Reduction

Specularity reduction is the second process of the two main processes we
have proposed. The purpose of this process is to decrease the intensity of the
specular pixels until we obtain diffuse-only reflections. All operations in this
process are still based only on two-neighboring pixels. Figure 17.7.a shows
three pixels: a, b, and c. For the sake of simplicity, for the moment we assume
a uniformly colored surface and those the three pixels are adjacent spatially
to each other. Pixel a is the highlight’s brightest pixels, and pixel c is a dif-
fuse pixel, and pixel b is a specular pixels located between pixels a and c. In
spatial-image intensity space, the image intensity of pixel a will be the largest
value followed by pixels b and c, as shown in Figure 17.7.b. If we transform
the pixels into maximum chromaticity-intensity space, we will obtain a point
distribution illustrated in Figure 17.7.c.

Figure 17.8 illustrates the basic idea of our specularity reduction. In consid-
ering a two-pixel operation, the iteration begins with comparing the maximum
chromaticity of point a and point b in Figure 17.8.d . From the maximum chro-
maticity definition in Equation (17.13), we know that the smaller them ′

s is, the
bigger the maximum chromaticity value. In other words, point b is more dif-
fuse than point a. Thus, by shifting point a using the specular-to-diffuse mech-
anism w.r.t the maximum chromaticity of point b, the more diffuse pixel a can
be obtained, i.e., the intensity of pixel a becomes decreased and its chromatic-
ity becomes identical to point b’s, as illustrated in Figure 17.8.b and 17.8.e,
respectively. Using the same process in the second iteration, the maximum
chromaticities of point b and point c are compared and then shifted. When the
maximum chromaticity of point b equals the maximum chromaticity of point
c, the intensity of pixel b becomes equal to its diffuse component. The same
operation is done for all pixels iteratively until their maximum chromaticity

(a) (b) (c)

specular

a
a

b

c

(x,y)

b

c
diffuse

I
~ I

~

s ~
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Figure 17.8. Basic idea of the iterative framework using local two-pixels operation. Top row,
spatial-intensity space: (a) Initial condition. (b) First looping. (c) Final condition; Bottom row,
chromaticity intensity space: (d) Initial condition. (e) First looping. (f) Final condition.

becomes the same (Figure 17.8.f), which as a result, produces the diffuse com-
ponents of the three pixels (Figure 17.8.c).

However, the above termination condition, looping until the maximum chro-
maticities of all pixels are the same, is feasible only for a uniformly colored
surface. In multicolored surfaces, such a termination condition will produce
incorrect separation results. Therefore, to determine the termination we use
the diffuse verification process explained in Subsection 4.1. We have learned
that the process can identify whether an image has diffuse-only pixels, even for
a multicolored image. Algorithm 5.1 shows the pseudo-code of the iteration
method for both uniform and multicolored surfaces.

5. Implementation

Algorithm 5.1 shows the pseudo-code of the iterative algorithm. It be-
gins with executing function delta(N, S, ε), which computes the difference of
the intensity logarithmic differentiation of the normalized image (N ) and the
specular-free image (S). In discrete operations, the logarithmic differentiation
is done using: dlog(I ′tot(x)) = log(ΣI ′i(x + 1))− log(ΣI ′i(x)), where ΣI ′i =
(I ′r+I ′g+I ′b). Then, the function computes Δ = dlog(I ′tot(x))−dlog(I̊tot(x)),
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and labels the pixels of the normalized image: for pixels that have Δ more than
ε (≈ 0), they are labeled ’specular’, otherwise, they are labeled ’diffuse’.

Algorithm 5.1: Iteration(N, S, ε)

comment: N=normalized-image; S= specular-free-image

(1) Δ = delta(N, S, ε);
(2) while any(Δ(x) > ε)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for x← 0 to sizeof(N)-1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3) if x.f lag == diffuse
then next(x);

(4) if IsDiscontinuity(x, x + 1) == true

then

⎧⎨
⎩

x.f lag = discontinuity;
(x + 1).f lag = discontinuity;
next(x);

(5) if σ̃′(x) == σ̃′(x + 1)

then

⎧⎨
⎩

x.f lag = noise;
(x + 1).f lag = noise;
next(x);

(6) M(x) = Specular2Diffuse(I′(x), I′(x + 1));
next(x);

N = M ;
(7) Δ = delta(N, S, ε);

return (N )
comment: N = normalized diffuse component

In Step 2 until Step 4, if there are any pixels labeled ’specular’, for each
of them, the algorithm examines whether the pixel and its neighbor are color
discontinuity pixels. If so, then they are labeled ’discontinuity’; otherwise, then
at least one of them must be a specular pixel. In Step 5, before we apply the
specular-to-diffuse mechanism to both pixels, additional checking is necessary,
i.e., whether both pixels’ maximum chromaticity is the same. If they are the
same, then the pixels are labeled ’noise’. The reason that they are noise and
not specular pixels is because two-neighboring specular pixels never have the
same maximum chromaticity.

In Step 6, using the specular-to-diffuse mechanism the intensity and max-
imum chromaticity value of the pixel that have smaller σ̃ ′ is shifted w.r.t.
the pixel with bigger σ̃ ′. This is applied to all pixels, and produces a more
diffuse normalized image. By setting N equal to this image (M ), function
delta(N, S, ε) is executed once again in Step 7. This time, pixels labeled ’dis-
continuity’ and ’noise’ are ignored (not included in the process). Finally, if
there is still any Δ larger than ε, then the iteration continues; if not, the sepa-
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ration terminates, which consequently yields a diffuse component of the nor-
malized image.

In our implementation, we define ε = 0. For color discontinuity thresh-
olds (thR and thG), we set them with the same number ranging from 0.05 to
0.1. The numbers are chosen by considering camera noise, illumination color
variance, ambient light (some considerably small interreflections) and surface
color variance (although human perception deems that the color surface is uni-
form, there is, in fact, still color variance due to dust, imperfect painting, etc.
[27]).

Algorithm 5.2: ControlledThreshold(N, S)

comment: N=normalized-image; S= specular-free-image

RemoveAchromaticPixels(N );
stepTH = InitialThreshold;
while stepTHε⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δ = delta(N, S, ε);
if any(Δ(x) > stepTH)

then Iteration(N, S, stepTH);
stepTH = stepTH − δ;
ResetAllLabels();

Renormalization(N );
return (N );
comment: N=actual diffuse component

For a more stable and robust algorithm we add an algorithm that controls the
decrease of the threshold of Δ step-by-step, as described in Algorithm 5.2. In
function Iteration(N, S, ε), stepTh will replace ε, which in our implemen-
tation its initial value is equal to 0.5. Ideally, the initial value should be set
as large as possible; yet, by considering the time computation the number is
chosen. To obtain more accurate results, the smaller subtracting number (δ) is
preferable and, in our implementation, we set it equal to 0.01. To anticipate
regions having achromatic pixels (I ′r = I ′g = I ′b), which are inevitable in the
real images, we remove them by using simple thresholding in maximum chro-
maticity; achromatic pixels of normalized image have maximum chromaticity
near 1/3.

6. Discussion

In previous sections, we assumed that the estimated illumination chromatic-
ity is exactly identical to the input image’s illumination chromaticity, Γ = Γ est

(Equation 17.10). However, to estimate illumination chromaticity accurately
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is not trivial; real images always have noises that make the estimation deviate
from the actual value. In this section, we intend to describe the effect of illu-
mination error in estimating the value of md by using the specular-to-diffuse
mechanism.

Without normalizing an image intensity, the correlation between m d and
image intensity in Equation (17.18) becomes:

md = Ĩ
σ̃ − Γ̃

σ̃(Λ̃− Γ̃)
(17.32)

where Ĩ = max(Ir, Ig, Ib), with I is defined in Equation (17.7). While, σ̃, Λ̃
and Γ̃ are the σc, Λc and Γc of Ĩ (with index c is identical to the color channel
of Ĩ), respectively. We define the estimated illumination chromaticity equal
Γ̃ + eill, where eill is the error of illumination estimation, whose value can be
either positive or negative. Thus, md of error illumination becomes:

merr
d = Ĩ

σ̃ − Γ̃− eill
σ̃(Λ̃− Γ̃− eill) (17.33)

We express the error of computing md as: err =
∣∣∣md −merr

d

∣∣∣. By plugging
Equation (17.32) and Equation (17.33) into the error definition, we obtain:

err =
∣∣∣ (Λ̃− σ̃)
(Λ̃− Γ̃)(Λ̃− Γ̃− eill)

Ĩ

σ̃
eill

∣∣∣ (17.34)

The last equation means that the error of estimatingmd depends on:

(Λ̃− σ̃), whose value is determined by ms (the specular weighting fac-
tor). The bigger the value ofms, the larger the difference between σ̃ and
Λ̃.

(Λ̃− Γ̃). The smaller difference causes the larger error. Consequently,
the error will be larger for pixels whose Λ̃ is near 1/3 (achromatic pix-
els).

Ĩ. The brighter image intensity causes the larger error of estimated md.
For raw images taken directly from a digital camera, the range of image
intensity is 0 ∼ 255.

σ̃, the image chromaticity of Ĩ . The smaller σ̃ produces the larger error.
The smallest value of σ̃ is 1/3 (for chromatic pixels, σ̃ > 1/3).

Besides error in estimating illumination chromaticity, we also consider error
in estimating actual diffuse chromaticity, Λ̃. We define the error as: Λ̃ + ech,
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which makes Equation (17.33) become:

merr
d = Ĩ

σ̃ − Γ̃− eill
σ̃
[
(Λ̃ + ech)− (Γ̃ + eill)

] (17.35)

Consequently, err of estimatingmd:

err =∣∣∣ (σ̃ − Γ̃)
(Λ̃− Γ̃)(Λ̃ + ech − Γ̃− eill)

Ĩ

σ̃
ech +

(Λ̃− σ̃)
(Λ̃− Γ̃)(Λ̃ + ech − Γ̃− eill)

Ĩ

σ̃
eill

∣∣∣
(17.36)

For normalized images and chromatic surface color, σ̃ > Γ̃ and Λ̃ > Γ̃, where
Γ̃ = 1/3. The last equation shows that the error of estimating m d is an accu-
mulation of the errors caused by the illumination chromaticity and the diffuse
chromaticity imprecise estimation.

7. Experimental Results

All images in our experiments were taken using a CCD camera: SONY
DXC-9000 (a progressive 3 CCD digital camera) by setting the gamma correc-
tion off. The separations were processed using Intel Pentium III CPU 850 MHz
Double Processors, with memory 700 MB RAM. We used convex-shaped ob-
jects to avoid inter-reflections, and did not take account of saturated or bloom-
ing pixels in our experiments. The illumination chromaticities were estimated
using a color constancy algorithm [26]. This color constancy method requires
crude highlight regions, which can be obtained using thresholding in both in-
tensity and saturation.

Evaluation. We evaluated the estimation results by comparing the results
of two polarizing filters. We placed one of the two filters in front of camera
and the other in front of the light source. Theoretically, if we change the po-
larization angle of one of the two filters into a certain angle, we can obtain
diffuse-only reflections. In our experiment, we changed the polarization an-
gle of the filter placed in front of the camera. Figure 17.9.a, b and c show,
respectively, the input image, the diffuse reflection component obtained using
the two polarizing filters (ground truth) and reflection components estimated
using our method. Figure 17.9.d, e and f show the difference of image intensity
values of the input image (Figure 17.9.a) and the ground truth (Figure 17.9.b),
in red, green and blue channels, respectively. The ranges of blue pixels in the
figures are 0 ∼ 5. Green pixels are 6 ∼ 15, red pixels are 16 ∼ 35, while
yellow pixels represent larger than 35. In regions exhibit highlights, we can
observe large differences of the intensity values in all color channels. Also, in
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certain places near occluding boundaries, yellow and red pixels appear. The
latter is caused by the difference of intensity distribution when the polariza-
tion angle is changed. Figure 17.9.g, h and i show the difference of image
intensity values of the estimated reflection component (Figure 17.9.c) and the
ground truth (Figure 17.9.b) in red, green and blue, respectively. In regions
that originally exhibit highlights, the colors became blue, indicating that the
estimation result was considerably accurate. Red and green pixels occurring
in many places in the comparison were due to two main factors: inaccurate il-
lumination chromaticity estimation, and dark noise. Despite these factors, the
estimation results are considerably accurate, since the maximum value of dark
noise of the camera (Sony DXC-9000) is around 10. Figure 17.9 shows another
separation result using a different object. Note that, in this evaluation, we did
not evaluate pixels whose image intensity was below camera dark (black pixels
in the evaluation represent unevaluated pixels).

Figure 17.11 shows the separation result of Figure 17.5.a., where the ob-
jects were lit with a solux halogen lamp. For a more complex textured sur-
face, Figure 17.12.a shows an image of a textured surface under fluorescent
lights in an uncontrolled environment. The specular-free image, which was
generated by setting Λ̃new equal to 0.5 is shown in Figure 17.12.b. Figure
17.12.c and 17.12.d show the separated components of the object. To separate
the diffuse and specular components from the image (with size 640x480), the
computational time using our machine was 2 minutes and 36 seconds. Figure
17.13.a shows a complex scene lit with fluorescent lights in an uncontrolled en-
vironment. The specular-free image result is shown in Figure 17.13.b. Figure
17.14.a and Figure 17.14.b show the diffuse and specular reflections, respec-
tively. In the estimated diffuse component (Figure 17.14.a) and the specular-
free image (Figure 17.13.b), regions which are originally white become dark.
The reason is that the specular-to-diffuse mechanism failed to handle achro-
matic pixels (Section 1.2). The computational time for processing the image
(with size 640x480) was 6 minute and 6 seconds. For more separation results,
please visit our website:
www.cvl.iis.u-tokyo.ac.jp/∼robby/textureSeparation/results.html

8. Conclusion

We have proposed a novel method to separate diffuse and specular reflection
components. The main insight of the method is in the chromaticity-based iter-
ation with regard to the logarithmic differentiation of the specular-free image.
Using the method, the separation problem in textured surfaces with complex
multicolored scene can be resolved without requiring explicit color segmenta-
tion. It is possible because we base our method on local operation by utilizing
the specular-free image. The three crucial factors and thus, the main contribu-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 17.9. Top row: (a) multicolored input image. (b) Ground truth. (c) Estimation. Middle
row: comparison of image (a) and (b): (d) R channel. (e) G channel. (f) B channel. Bottom
row: comparison of image (c) and (b): (g) R channel. (h) G channel. (i) B channel.
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Figure 17.10. Top row: (a) textured input image. (b) Ground truth. (c) Estimation. Middle
row: comparison of image (a) and (b): (d) R channel. (e) G channel. (f) B channel. Bottom
row: comparison of image (c) and (b): (g) R channel. (h) G channel. (i) B channel.

Figure 17.11. (a) Diffuse component of Figure 17.5.a. (b) Specular component of Figure
17.5.a
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(a) (b)

(c) (d)

Figure 17.12. (a) A complex textured surface lit with fluorescent lights. (b) The specular-
free image was created by setting Λ̃′ = 0.5. (c) Diffuse reflection component. (d) Specular
reflection component.

tions of our method, are the specular-to-diffuse mechanism, the specular-free
image, and the logarithmic differentiation-based iteration framework. The ex-
perimental results on complex textured images show the effectiveness of our
proposed method.

Appendix: A
Derivation of the correlation between illumination chromaticity and image chromaticity.

σ̃′(x) =
m′

d(x)Λ̃′(x) + 1
3m′

s(x)

m′
d(x)[Λ′

r(x) + Λ′
g(x) + Λ′

b(x)] + m′
s(x)

(17.A.1)

where [Λ′
r + Λ′

g + Λ′
b] = 1. For local (pixel based) operation the location (x) can be removed.

Then:

m′
s = m′

d
(Λ̃′ − σ̃′)
(σ̃′ − 1/3)

(17.A.2)

Substituting m′
s in the definition of Ĩ (Equation (17.10)) with m′

s in the last equation:

Ĩ ′ = m′
d(Λ̃

′ − 1/3)(
σ̃′

σ̃′ − 1/3
) (17.A.3)

Appendix: B
A diffuse pixel from a normalized image can be described as: I ′(x) = m′

d(x)Λ′(x). In
Section 3.1, we have shown that using specular-to-diffuse mechanism by substituting Λ̃′ with
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Figure 17.13. (a) A complex multicolored scene lit with fluorescent lights. (b) The specular-
free image by setting Λ̃′ = 0.5
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Figure 17.14. (a) Diffuse reflection component. (b) Specular reflection component
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an arbitrary value (Λ̃new) whose value is between 1/3 ∼ 1, we can obtain:

I̊(x) = m̊d(x)Λ̊(x) = m′
d(x)k(x)Λ̊(x) (17.B.1)

where, for pixels with the same diffuse chromaticity, k is a constant scalar value. Thus, we can
obtain that the geometrical profile of specular-free image is identical to that of diffuse reflection
component. The proof for specular pixels is as follows:

A specular pixel with identical diffuse geometrical profile to the above diffuse pixel is de-

scribed as: I′(x) = m′
d(x)Λ′(x)+

m′
s(x)

3 . By applying specular-to-diffuse mechanism (Equa-
tion (17.23)) to the specular pixel with the same value of Λ̃new, we can obtain:

m̊d(x) =
Ĩ ′(x)[3σ̃′(x)− 1]

σ̃′(x)[3Λ̃new − 1]
(17.B.2)

where Ĩ ′(x) = m′
d(x)Λ̃′(x)+

m′
s(x)

3
, and Λ̃new is the arbitrary maximum chromaticity. Unlike

diffuse pixels, for specular pixels, σ̃ ′ 	= Λ̃′. Then, the last equation becomes:

m̊d(x) =
[
m′

d(x)Λ̃′(x) +
m′

s(x)

3

]
[3σ̃′(x) − 1]

σ̃′(x)[3Λ̃new − 1]
(17.B.3)

Since we argued that in specular-free image specular reflection disappear (m̊ s = 0), then m̊d

of the specular pixel should equal to m̊d of the diffuse pixel:

m̊diff
d = m̊spec

d (17.B.4)

m′
d

[
3Λ̃′(x) − 1

3Λ̃new − 1

]
=

[
m′

d(x)Λ̃′(x) +
m′

s(x)

3

]
[3σ̃′(x)− 1]

σ̃′(x)[3Λ̃new − 1]
(17.B.5)

m′
d(x)

[
3Λ̃′(x) − 1

]
σ̃′(x) = m′

d(x)Λ̃′(x)
[
3σ̃′(x) − 1

]
+

m′
s(x)

3

[
3σ̃′(x) − 1

]
(17.B.6)

m′
d(x)

[
Λ̃′(x) − σ̃′(x)

]
= m′

s(x)
[
σ̃′(x)− 1/3

]
(17.B.7)

m′
s(x) = m′

d(x)
(Λ̃′(x)− σ̃′(x))

(σ̃′(x) − 1/3)
(17.B.8)

the last equation is identical to Equation (17.A.2) in Appendix A, which proves that m̊ diff
d =

m̊spec
d holds true. Therefore, all pixels in a specular-free image have no specular reflection

component and its geometrical profile is identical to the diffuse component of the input image.
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Chapter 18

CREATING PHOTOREALISTIC VIRTUAL
MODEL WITH POLARIZATION-BASED VISION
SYSTEM

Takushi Shibata, Toru Takahashi, Daisuke Miyazaki, Yoichi Sato, Katsushi
Ikeuchi

Abstract Recently, 3D models are used in many fields such as education, medical ser-
vices, entertainment, art, digital archive, etc., because of the progress of com-
putational time and demand for creating photorealistic virtual model is increas-
ing for higher reality. In the field of computer vision, a number of techniques
have been developed for creating the virtual model by observing the real object
in computer vision field. In this chapter, we propose the method for creating
photorealistic virtual model by using laser range sensor and polarization based
image capture system. We capture the range and color images of the object
which is rotated on the rotary table. In geometrical aspects, an object surface
shape is reconstructed by merging multiple range images of the object. In op-
tical aspects, color images are captured under fixed point light source. By using
reconstructed object shape and sequence of color images of the object, parame-
ter of a reflection model are estimated in a robust manner. As a result, we can
make photorealistic 3D model in consideration of surface reflection. The key
point of the proposed method is that, first, the diffuse and specular reflection
components are separated from the color image sequence, and then, reflectance
parameters of each reflection component are estimated separately. In separation
of reflection components, we use polarization filter. This approach enables
estimation of reflectance properties of real objects whose surfaces show spec-
ularity as well as diffusely reflected lights. The recovered object shape and
reflectance properties are then used for synthesizing object images with realistic
shading effects under arbitrary illumination conditions.

1. Introduction

It has become more and more important to develop easy methods for getting
the accurate reflectance information as the interest in virtual reality is grow-
ing. Currently, virtual reality system is used in a wide variety of applications
including electronic commerce, simulation-and-training, and virtual museum
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walk-through. In spite of these many needs for virtual reality models, most
of the virtual reality systems utilize models that are manually created by pro-
grammers. If we can build a system that automatically create the models for
virtual reality system, we can drastically decrease modeling costs for virtual
reality systems.

One major approach to building the virtual object model is the one which re-
constructs the input images taken by camera. In recent years, many techniques
have been proposed for interpolating between views by warping input images,
using depth information or correspondences between multiple images. The
general notion of generating new views from pre-acquired imagery is called
image-based rendering. Apple’s QuickTime VR is one example. Gorter et al.
[5] proposed the method for capturing the complete appearance of the real ob-
jects and scenes, and rendering the images of the objects from new view posi-
tions. Unlike the traditional shape capturing method which is used in computer
vision, they don’t use the fine geometric representation. Instead, they use the
4D function called Lumigraph. The Lumigraph is a subset of the complete
plenoptic function which represents the complete flow of light at all positions
in all directions. Levoy et al.[7] also proposed the subset of the plenoptic func-
tion called Light Field. They interpretes the input images as two slices of 4-D
function. This function can completely characterizes the flow of light through
unobstructed space in a static scene with fixed illumination.

Nishino et al.[10] proposed another approach for image-based rendering.
They used a fine geometric model and the eigen-texture which was texture-
patches made of pictures taken from various points of view and reduced its
data set by principal-component analysis. Wood et al.[19] also proposed the
method which used a fine geometric model and point-based color information
called Lumisphere. Lumisphere also reduced information quantity with the use
of principal-component analysis. Georghiades[4] proposed the method recov-
ering BRDF to render under novel illumination and 3D shape of the object at
the same time from a small number of photographs without information about
the position and intensity of the light-source and the position of the camera.
The method is under assumption that image is monochrome and the parame-
ters are constant across the surface. Debevec et al.[2] proposed the method to
acquire the reflectance filed of a human face and use these measurements to
render the face under arbitrary changes in lighting and viewpoint. They ac-
quire images of the face from a small set of viewpoints under a dense sampling
of incident illumination directions using the setup named Light Stage. Then
they construct a reflectance function image for each observed image pixel to
generate images of the face from the viewpoints in any form of sampled or
computed illumination. This method has been extended[3] to composite a live
performance of an actor into a virtual set wherein the actor is consistently il-
luminated by the virtual environment using sphere of inward-pointing RGB
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light. Furthermore, Wenger et al.[17] have extended it to time-multiplexed
illumination and high-speed photography to capture time-varying reflectance
properties of a live performance in a way that the lighting and reflectance of
the actor can be designed and modified in postproduction.

The other approach to the problem is called model-based rendering. Usu-
ally, model-based rendering uses information of a fine geometry and a physical
surface property. Sato et al.[13] built a virtual model which is made of a fine
geometric model and reflectance parameters used in a particular reflectance
model. They fixed the position of the camera and point light source and, then,
put the real object on the rotary table.

When we make a model of reflectance properties by observing real objects,
we need to consider two reflection components: the specular reflection com-
ponent and the diffuse reflection component. If we only map the observed
image onto the object shape model as observed surface texture, we cannot re-
produce the appearance of the object under different viewing and illumination
conditions correctly. When highlights are observed in the original images,
those highlights are fixed on a certain position of the object surface perma-
nently regardless of illumination and viewing conditions. Therefore, in order
to model the reflection properties correctly, we have to separate the specular
reflection and diffuse reflection.

Several techniques to separate the reflection components have been devel-
oped. One major approach to the problem uses color as a clue. Most of color
based methods are based on the dichromatic reflection model proposed by
Shafer[15]. The dichromatic reflection model suggests that reflected lights
from dielectric material have different spectral distributions between the spec-
ular and the diffuse reflection components. The specular component has
a similar spectral distribution to that of the illumination. On the other hand,
the diffuse component has an altered distribution by the colorants in the sur-
face medium. Consequently, the color of an image point can be viewed as the
sum of of two vectors with different directions in color space. Klinker et al.
[6] observed that color histogram of a uniformly colored object surface makes
the shape of skewed T with two limbs in the color space. One limb represents
the purely diffuse points while the other represents highlight regions. Based
on this observation, Klinker et al.[6] proposed an algorithm for automatically
identifying the two limbs and using them to separate the diffuse and spec-
ular reflection components at each surface point. Sato and Ikeuchi[12] used
a sequence of color images taken under actively varying light direction, and
successfully separated the reflection components for each object surface point
even if object surface is not uniformly colored.

Nayer et al.[9] used not only color but also polarization to separate the
reflection components. Their proposed algorithm used the partial polarization
included in the reflection in order to determine the color of specular component
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independently for each image point. The specular color imposes constraints
on the color of the diffuse component and the neighboring diffuse colors that
satisfy these constraints are used to estimate the diffuse color vector for each
image point.

All of these separation methods based on the dichromatic reflection model
suffer from the common weakness in that they cannot work if the specular
and diffuse reflection vectors have same direction in a color space. In this
chapter, we propose a new method for separating the reflection components
using polarization. Unlike the previously proposed methods, our method does
not require the diffuse color and the specular color to be different. In order
to separate the reflection components in a robust manner, we use a controlled
illumination which is linearly polarized, and we take the images of an object
through a polarization filter. Our method is able to separate the diffuse
and specular reflection components for each image pixel independently, and
therefore, it can be applied to objects with complicated surface textures.

This chapter is organized as follows: Section 2 describes the representative
reflection models and especially, Torrance-Sparrow reflectance model which
is used in this chapter is described in detail. Section 3 explains polarization
mechanism which is used to separate the reflection components is explained.
In Section 4, data acquisition system which contains the CCD camera, the light
stripe range sensor, polarization filter, point light source, and rotary table, is
described. In Section 5, the details of the algorithm is described and the sepa-
ration result is examined. In Section 6, the parameters of the Torrance-Sparrow
are estimated, and the result is presented. In Section 7, by the estimated pa-
rameters, We synthesize the virtual images. Finally, Section 8 concludes the
chapter.

2. Reflection Mechanism

A number of reflectance models have been proposed in the past by the re-
searchers in the fields of applied physics and computer vision. In general, these
models are classified into two categories: a specular reflectance model and a
diffuse reflectance model.

2.1 Diffuse Reflection

A diffuse reflectance model represents reflected rays resulted from internal
scattering inside surface medium. When light strikes an interface between two
different medias, some percentage of the light passes through the boundary
and the remaining portion of light is reflected. The penetrating light hits the
internal pigments of objects, and is re-emitted randomly(Figure18.1). This re-
emitted light is called diffuse reflection, and Lambert is the first who modeled
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Figure 18.1. Diffuse reflection resulting from the internal scattering mechanism

this phenomenon. The formula Lambert deduced is:

Idiff = Cdiff
�N · �S

= Cdiff cos θi (18.1)

where Idiff, Cdiff,
�N , �S, θi are the brightness, a proportional constant, the sur-

face orientation, the light source direction, the angle between the light source
direction and the surface orientation, respectively. The diffuse component
does not depend on the angle of reflection but does depend on the incident
light.

2.2 Specular Reflection

A specular reflectance model, on the other hand, represents light rays re-
flected on the surface of the object. The surface may be assumed to be com-
posed of microscopic planar elements, each of which has its own surface ori-
entation different from the macroscopic local orientation of the surface. The
result is the specular reflection component that spreads around the specular
direction and that depends on the surface roughness for the width of the distri-
bution.

Specular reflectance model can be derived from the two completely different
approaches: physical optics based and geometrical optics based. The physical
optics based approach uses electromagnetic theory and Maxwell’s equations
to study the propagation of light. On the other hand, geometrical optics based
approach uses assumption of the short wave length of light and treats the prop-
agation of light geometrically. The representative physical optics based model
is the Beckmann-Spizzichino model, and the representative geometrical optics
based model is the Torrance-Sparrow model[16].
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2.2.1 Physical Optics Based Model

The physical models are directly derived from electromagnetic wave the-
ory by using Maxwell’s equations. Beckmann and Spizzichino deduced their
reflectance model by solving the Maxwell’s equations by using Helmholts in-
tegral with Kirchoff’s assumption on a perfect conductor surface. They made
some assumptions to make up their reflectance model, as follows:

The surface height is assumed to be normally distributed.

The radius of curvature of surface irregularities is large compared to the
wavelength of incident light (Kirchoff’s assumption).

The surface is assumed to be a perfect conductor.

The shadowing and masking of surface points by adjacent surface points
is ignored.

The light is assumed to be reflected only once and not to bounce between
surface facets before scattered in the direction of the observer.

The incident wave is assumed to be perpendicularly polarized.

The incident wave is assumed to be a plane wave. This assumption is
reasonable when the light source is at a great distance from the surface
relative to the physical dimensions of the surface.

The Beckmann-Spizzichino model consists of the specular lobe and specu-
lar spike component. The specular spike component is represented as a delta
function and causes very sharp reflection when reflection angle equals to the
incidence angle(specular angle). The specular lobe component is represented
as a Gaussian function and causes widely spreading reflection.

2.2.2 Geometrical Optics Based Model

The geometrical models are derived from simplifying many of the light
propagation problems. Torrance and Sparrow obtained their reflectance model
by assuming as follows:

The surface is modeled as a collection of planar microfacets, and the
facet slopes are assumed to be normally distributed.

The size of planar facets is much greater than the wave length of incident
light. Therefore, it can be assumed that incident light rays are reflected
by each facet in its specular direction only.

Each facet is one side of a symmetric V-groove cavity.
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The light source is assumed to be at a great distance from the surface so
that all incident rays are regarded to be parallel to one another.

The Torrance-Sparrow model is represented by a Gaussian function of the sur-
face roughness parameters.

2.3 General Reflectance Model

The Torrance-Sparrow model is aimed for modeling rough surface of any
materials. The Beckmann-Spizzichino model describes the reflection from
rough to smooth surface. The Torrance-Sparrow model is good approximation
of the Beckmann-Spizzichino model when it is applied to a rough surface. So,
physical optics based model is more general than the geometrical optics based.
But, physical optics based model has very complex mathematical forms and
is difficult to manipulate. Geometrical optics based model, however, has very
simple function form, but it can not be applied to the smooth surface materials.

In order to combine the reflection models for the smooth surface and the
rough surface, Nayer, Ikeuchi, and Kanade[8] proposed the general reflectance
model. This model consists of three components: specular spike, specular lobe,
and diffuse. Each of these components is represented by, respectively, these
three functions: the delta function, the Gaussian function, and the Lambertian’s
cosine function.

We assume that the surface is located at the origin of the coordinate frame,
and that surface normal vector is in the direction of the Z axis. The beam
illuminating the surface lies in the X-Z plane, and it’s incident on the surface
is at an angle, θi. The observer is located at (θr, φr).

Under this geometry, general reflectance model is represented as follows

I = Cssδ(θi − θr)(φr) +Csl
exp (−kα2)

cos θr
+Cdiff cos θi (18.2)

Css, Csl, Cdiff are constants which respectively represent the strength of the
specular spike, specular lobe, and diffuse components. The α is the angle
between the surface normal and the bisector of the viewing and surface direc-
tions. The k is the parameter related to the Torrance-Sparrow surface rough-
ness parameter.

The ratio Csl/Css is dependent on the optical roughness of the surface.
Mathematically, optical roughness is defined as

g = (2π
σh
λ

(cos θi + cos θr))2 (18.3)

where σh, λ are the root-mean-square of the height distribution, and the wave-
length, respectively. For smooth surface (g � 1) , the spike component is
dominant. As the roughness increase, however, the spike component shrinks
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Figure 18.2. Diagram of the Unified Reflectance Model

rapidly, and for rough surface g � 1, the lobe component begins to dominate.
It is only for a small range of roughness values that C sl and Css are both sig-
nificant. In this chapter, the Torrance-Sparrow model is used for representing
the diffuse and specular components.

Im = ID,m cos θi + IS,m
1

cos θr
e−α

2/2σ2
m = R,G, B (18.4)

where θi is the angle between the surface normal and the light source direction,
θr is the angle between the surface normal and the viewing direction, α is the
angle between the surface normal and the bisector of the light source direction
and the viewing direction, ID,m and IS,m are the scaling factor for the diffuse
and specular components, and σ is the standard deviation of a facet slope of
the Torrance-Sparrow model.

In this model, the reflections bounced only once from the light source are
considered. Therefore, this model is valid only for the convex objects. So,
in this research, we use the objects so that inter-reflection does not affect our
analysis significantly.

We refer to ID,m as the diffuse reflection parameters, and IS,m and σ as the
specular reflection parameters.

3. Polarization

Polarization has been used for several decades in the remote sensing re-
search. Wolff and Boult[18] have proposed an algorithm which analyzes linear
polarization states of highlights removal and material classification. Boult and
Wolff[1] have also studied the classification of scene edges based on their po-
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larization characteristics. Recently, Saito et al.[11] have proposed a method for
measuring surface orientation of a transparent object using the degree of linear
polarization in highlights observed on the object. Schechner et al.[14] have

presented the method for classifying the transmitted image and the reflected
image to the transparent sheet.

The method presented in this chapter uses two linear polarization filters.
One is placed in front of a point light source in order to polarize the light

source linearly, and the other is placed in front of a camera to capture images
through the linear polarization filter.

For an ideal filter, a light wave should be passed unattenuated when its elec-
tric field is aligned with the polarization axis of the filter, and the energy is
attenuated as a trigonometric function when the filter is rotated.

As described in the previous section, the image brightness value taken by
sensor is described as:

I = Id + Is (18.5)

where Id represents the diffuse component and Is represents the specular com-
ponent.

When incident light is linearly polarized, the diffuse component tends to
be unpolarized due to its internal scattering. In contrast, the specular reflection
component tends to remain linearly polarized. Therefore, the observed bright-
ness of the specular component can be expressed as a trigonometric function
for polarization filter angle, and that of the diffuse component can be ex-
pressed as a constant. Thus the image brightness observed through a linear
polarization filter is described as:

I = Ic + Iv(1 + cos 2(θ − β)) (18.6)

where θ is the angle of the polarization filter and β is the phase angle deter-
mined by the projection of the surface normal onto the plane of the filter.

It should be noted that in the above equation I c is not equal to the real
diffuse intensity, and 2 × Iv is not equal to the real specular intensity. The
diffuse reflection component which is unpolarized is always attenuated by the
polarization filter and the specular reflection component is also attenuated

by the difference of the reflectivity between the light waves which are parallel
or perpendicular to the incidence plane. 1

The polarization state of reflected light dependents on several factors in-
cluding the material of the reflecting surface element, and the type of reflection
component, i.e. diffuse or specular. In order to describe the state of polar-
ization of the reflected light, the Fresnel reflection coefficients F⊥(η, ψ) and
F‖(η, ψ) are used [18]. The Fresnel reflection coefficients determine the po-
larization of reflected light waves in the directions perpendicular and parallel
to the plane of incidence respectively, and determine the maximum and the
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minimum intensities which are observed when the angle θ of the polarization
filter varies. The parameter η is the complex index of reflection of the sur-
face medium and the parameter ψ is the incidence angle. Since we use a
linearly polarized light source, we can assume that the intensity of the specular
component observed through a linear polarization filter is guaranteed to be-
come equal to zero at a certain angle. Hence, we obtain the following relation
between Iv and specular reflection intensity:

q =
F⊥(η, ψ)
F‖(η, ψ)

(18.7)

2Iv =
q

1 + q
Is (18.8)

where Is equals the specular reflection intensity.
It is known that the diffuse component is also polarized when the viewing

angle is close to 90 degrees, e.g., near the occluding contour of an object.
However, the diffuse component becomes linearly polarized only in narrow
region and the degree of polarization in the diffuse reflection component
is generally negligible. Hence, we assume that the diffuse component is

unpolarized in our analysis. The intensity of unpolarized light is attenuated by
half when it passes a linear polarization filter. As a result, I c and the diffuse
component have a relation as below:

Ic =
1
2
Id (18.9)

where 1
2Id is the intensity of the diffuse reflection.

Figure 18.3 shows the relation between the image brightness and the angle
of the polarization filter.

4. Data Acquisition System

The experimental setup for the image acquisition system used in our exper-
iment is illustrated in Figure 18.4. An object to be modeled in this experiment
is placed on the rotary table. A sequence of range images and color images
are captured as the object is rotated at a certain angle step. For each rotation
step, one range image and thirty five color images, which are taken every
five degrees of polarization filter rotation in front of the CCD camera, are
obtained.

A range image is obtained using a light-stripe range finder with a liquid
crystal shutter and a color CCD video camera. Each range image pixel rep-
resents an (X, Y, Z) location of a corresponding point on an object surface.
The same color camera is used for acquiring range images and color images.
Therefore, pixels of the range images and the color images directly corre-
spond. Color images are taken through a polarization filter.
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The range finder is calibrated to produce a 3 × 4 projection matrix which
represents the translation between the world coordinate system and the image
coordinate system. The location of the rotary table with respect to the world
coordinate system is calibrated before image acquisition. Therefore, object
location is uniquely determined by the translation matrix.

A xeon lamp is used as a light source. The lamp is small and is placed far
enough from the object so that we can assume that it is a point light source. In
order to illuminate the object with linearly polarized light, a linear polarization
filter is placed in front of the lamp.

5. Separation of Reflection Components

In our experiments, images of a target object are taken every five degrees of
filter rotation, i.e., 35 images in total. Then, the maximum intensity Imax and
the minimum intensity Imin are determined for every image pixel. Theoreti-
cally, only three images are sufficient for determining Imax and Imin. How-
ever, for increasing robustness of estimation of Imin and Imax, we uses more
images by rotating the polarization filter. If Imin − Imax for a certain pixel
is less than a threshold, we consider the pixel to contain only the diffuse com-
ponent. If Imax − Imin is larger than a threshold value, we consider that the
pixel contains the specular component and that Imax − Imin is equal to 2Iv
and Imin is equal to Ic.

intensity

filter angle

β+π/2 β+πβ

Ic+Iv

Ic+2Iv

Ic

intensity

filter angle

β+π/2 β+πβ

Ic+Iv

Ic+2Iv

Ic

Figure 18.3. Imge brightness plotted as a function of the orientation of a polarization filter
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In summary, our separation technique is proceeded as follows. First, a linear
polarization filter is placed in front of the light source and camera. Second,

input images of an object are captured for every 5 degrees of rotation of the
polarization filter in front of the camera. Third, Imax and Imin are determined
for each pixel. If Imax − Imin is larger than a threshold value, we determine
that the pixel contains the specular component and the intensity of the specular
component is obtained from Imax − Imin. Imin is used for determining the
intensity of the diffuse component.

Figure 18.5 shows an example of reflection component separation by us-
ing our proposed method. For comparison, we show another image which was
captured without a polarization filter. It shows that the specular and dif-
fuse reflection components were successfully separated even if they have the
similar color.

Polarizer

Range Sensor

CCD Camera Polarizer

Light

Object

Polarizer

Range Sensor

CCD Camera Polarizer

Light

Object

Figure 18.4. Image acquisition system

(a) (b) (c)

Figure 18.5. (a)Original image, (b)Specular component, (c)Diffuse component
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Figure 18.6. Estimated diffuse parameter image

6. Parameter Estimation

After separating the reflection components, we determine the reflection
parameters using the separated reflection component images.

6.1 Diffuse Parameters Estimation

Using the separated diffuse reflection image, we can estimate the diffuse
reflection parameters (ID,R, ID,G, ID,B) without undesirable effects from the
specular reflection component. The incidence angle θi can be obtained by

range sensors and camera calibration.
Figure 18.6 shows the estimated diffuse parameter image. We can see the

object surface color which is not attenuated due to the incidence angle.

6.2 Specular Parameters Estimation

After estimating the diffuse parameters, we also estimate the specular pa-
rameters (IS,R, ISG

, ISB
, σ) using the angle α and the angle θr as a known

information.
As described in the Section 3, separated specular images are attenuated by

a certain ratio determined by Fresnel reflection coefficients. But attenuation
ratio is constant overall highlight region, we can correctly estimate the specular
parameters. More precisely, the Fresnel reflection coefficients are dependent
on the incidence angle. However, the Fresnel coefficients are constant around
the incidence angle of less than 30 degrees, and the specular reflection is
observed only near the surface normal direction in our experimental setup.
Therefore, by setting the light and camera in the same direction, we can assume
that the Fresnel reflection coefficients are constant.

There is a significant difference between estimation of the diffuse and spec-
ular reflection. Diffuse reflection can be observed all across the object surface
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illuminated by a light. On the other hand, specular reflection is observed from
a limited viewing direction, and is observed over a narrow area of the object
surface. So, we have to select the sampling pixel carefully for specular pa-
rameters estimation. We used the same strategy described in [13]. Figure 18.7
shows the estimated σ and IS which are projected on the mesh model.

(a) (b)

Figure 18.7. (a)Specular parameter(σ) image, (b)Specular parameter(IS) image

7. Synthesized Images

Using the diffuse and specular reflection parameters estimated in the pre-
vious section, and the surface mesh model of the object, we synthesized vir-
tual images of the object under different illumination and viewing conditions.
Figure 18.8 shows the comparison between original images and synthesized
images viewed from different directions.

Comparing the synthesized images with the original images, we notice that
synthesized images are darker than the original images. This is probably
caused by the variation of the polarizer’s optical density with respect to the
wavelength. In order to avoid this problem, we should calibrate white bal-
ance before capturing images without the polarizer and before capturing im-
ages through the polarizer.

8. Conclusion

In this chapter, we proposed a new method for separating the reflection com-
ponents using polarization. Unlike the previously proposed methods, our
method does not require the difference of color between the specular reflec-
tion and diffuse reflection. So, our method can robustly separate the reflection
components even if objects have a white texture and illumination color is
white. After reflection component separation, we estimate the parameters of a
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Figure 18.8. Comparison between input images and synthesized images

reflection model by using the separated reflection components. By synthesiz-
ing virtual images under the arbitrary illumination and viewing environment,
we have shown that the reflection parameters are successfully estimated from
the separated reflection components. Future work includes calibrating white
balance because synthesized images are darker than the original images. We
would attempt to use circular polarizer for separating specular and diffuse com-
ponents easier. For large scale data, we will consider data compression for
efficiency.
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Notes
1. The incidence plane includes the surface normal and the illumination direction.
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Chapter 19

CLASSIFICATION OF BAYON FACES

Mawo Kamakura, Takeshi Oishi, Jun Takamatsu, and Katsushi Ikeuchi

Abstract Digital 3D models of historic buildings or cultural heritage objects are useful
for preservation. Not only can we store them permanently, but the models can
supply a clear guideline for the restoration process. 3D models also provide
sufficient information about geometrical characteristics that may help archaeol-
ogists to inspect and classify the objects. Currently, we are working on a 3D
digital-archiving project of the Bayon Temple. It is a building of stonework that
was built in the 12th century in Cambodia. It is famous for its towers with four
faces at the four cardinal points. According to research by JSA (Japanese gov-
ernment team for Safeguarding Angkor), the faces can be classified into three
groups based on subjective criteria. In this chapter, we explore a more objective
way to classify the faces by using measured 3D geometrical models. After align-
ment of 3D faces in the same coordinate system, orientation, and normalization,
we captured in-depth images of each face and then classified them by several
statistics methods.

1. Introduction

Over the past years, much research has been done on automatically obtain-
ing 3D shapes of art objects and cultural heritage objects using laser range
sensors. The performance of computers has improved rapidly, so research in
the fields of image processing and computer vision have also advanced. Mea-
suring real world objects and converting them to 3D digital models are well-
known applications of computer vision. We are currently working on digital
preservation of large-scale cultural heritage objects by using computer vision
techniques and laser range sensors. We have worked on the Great Buddha
Project [1] and have preserved cultural heritage objects such as the Kamakura,
Nara, and Atchana Great Buddha and at the same time have researched and
developed advanced modeling techniques.

Our work is on measuring and preserving the 3D shape of the Bayon faces
using laser range sensors (Fig. 19.2). The Bayon is a temple constructed in
the 12th century and is located in the center of the Angkor Thom. An enor-
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Figure 19.1. left: pictures of the Bayon temple, right: picture of Bayon face

mous site with a size of 100m x 100m and towers reaching about 40m at the
highest, it is famous for its towers, each with four faces carved on each side.
Figure 19.1 shows pictures of Bayon temple and Bayon Face. The Bayon Dig-
ital Archiving Project started in 2003 and until now six missions have been
executed [2]. Figure 19.3 shows the measurement result of the entire Bayon
Temple. In addition to modeling of the whole site, we have been modeling and
constructing libraries of the faces. There are 52 towers in Bayon with faces
on them, and 173 faces have endured damage or collapse. We have completed
measurement of all 173 faces in the previous six missions. Figure 19.4 shows
the picture of a face and the measurement result of the 3D face model.

From the 3D models acquired from the measurement, we made an objective
classification of the faces. According to research by the JSA (Japanese govern-
ment team for safeguarding Angkor) [3], the 173 faces can be classified into
three types: Deva, Asura, and Devata. It is known that the Deva type face is
dominant. However, this classification is based on subjective evaluation. We
expect to scientifically confirm the classification results of JSA, and if not, to
present a new classification which would be impossible to achieve by human
eyes.

The outline of the rest of this chapter is as follows. Section 2 gives a descrip-
tion of the Bayon faces. Section 3 explains the pre-classification normalization
process and the classification methods. In Section 4 we present experimental
results. Finally, in Section 5 we summarize and conclude this chapter.

2. Bayon face

The Art History team of JSA investigated the Bayon faces on the towers of
the Bayon Temple to see if they might provide insight into the purpose of the
construction of the temple. According to the JSA, as a result, the faces can be
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Figure 19.2. picture of laser range sensor

Figure 19.3. measurement result of entire Bayon temple

Figure 19.4. left: picture of face, right: measurement result of 3D face model
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classified into roughly three types: Deva, Asura, and Devata [3]. These faces
are classified based on the outlines of the faces. Some degree of regularity
could be identified in the locations where each of the types was found. JSA
found that the faces looking out from temple are all the Asura type; those on
the inner facing center tower are the Deva type; and those looking toward the
central sanctuary are the Devata type. The four-faced tower is thus a composite
of guardian deities, giving protection of the deities Deva and Asura, with the
goddess Devata attendant on the main deities. Figure 19.5 shows pictures, 3D
models and shape lines of three types Bayon faces. Typical face of each type
is 35N (Asura), 51S (Deva), 50E (Devata).

The Deva face is calm and noble, representing God. It is plump and rounded
in shape. The Devata face is a comparatively narrow face with a harsh expres-
sion. The Asura face is angular in shape with a square jaw and a rather grim,
heavy expression (Devil). It is known that the Deva type face is the dominant
one of these three types.

However, on some of the four-faced towers of the Bayon temple are many
other faces that are difficult to classify with accuracy. This is thought to be
related to the division of labor between different craftsmen, and the differ-
ences in their techniques. Also, differences may have been created by other
influences like weathering and destruction. JSA examined the degree of com-
pletion of the faces on the towers, and found that although some examples are
very nearly finished, overall there is high number of unfinished examples. Fur-
thermore, the Bayon temple was built in a short period of time, so the work
must undoubtedly have been divided between many different craftsmen. As
mentioned above, it can be gathered that the same group completed the four
faces in a single tower. It is highly likely that the same group completed two or
more towers at the same time. Furthermore, consistent variations can be iden-
tified in the shapes and expressions of the faces that enable us to classify them
roughly into the three types listed above: Deva, Devata, and Asura. However,
other places were found where the craftsmen could not have worked with any
awareness of creating one of these three types. There are many instances of
clear differences between the left and right sides of the face, suggesting the
possibility that separate groups of craftsmen worked on left and right sides.
Given this situation, 173 faces of four-faced towers of Bayon temple are clas-
sified, but the classification is not exact.

3. Classification technique

3D models with Bayon faces acquired by measurement are used and classi-
fied. First of all, we convert all the faces into homogeneous in-depth images,
that is, normalization. Afterward, we classify them by several statistic tech-
niques using the converted images.
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Figure 19.5. pictures, 3D models and shapes line of 3 types of Bayon faces.
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3.1 Normalization

First of all, we normalize an arbitrary 3D Bayon face as a standard face.
This normalization removes difference between the sizes and also between the
directions of the faces in the same size images. It also suppresses the influ-
ence of data excluding the face to a minimum. The 3D Bayon face model as a
standard face is in a consistent position and orientation, and its in-depth image
from an appropriate viewpoint is displayed in the entire specified area. Ac-
cording to the research by JSA, faces are classified based on the outline of the
face. So we fit the outline of the face with image size manually. At this time,
the moving matrix is Mref .

Next, we obtain a transformation matrix Mtar,i (i=1,...,N) for displaying all
face images similar to the standard face. N is number of faces being classified.
First, we obtain three coordinate points of a characteristic face; two points
from the inner corners of the eyes and one from a point between the mouth
and the nose. Let the points of a characteristic standard face model be (x 1,
x2, x3) and the points of characteristic normalized face models be (y1i, y2i,
y3i). We obtain R: rotation matrix, t: translation matrix, and c: variable of
expansion and reduction to minimize the squared distance between these two
points. This theorem is an absolute orientation problem [4]. Shown below is
the technique for solving the transformation matrix [5]. Figure 19.6 shows the
outline of normalization method.

Let X={x1, x2, . . . , xn} and Y={y1, y2, . . . , yn} be corresponding point
patterns in m-dimensional space. The average of the squared distances is,

e2(R, t, c) =
1
n

n∑
i=1

‖yi − (cRxi + t)‖ 2. (19.1)

Transformation parameters (R, t, c) to minimize the equation are given as
follows:

R = USV T (19.2)

t = μy − cRμx (19.3)

c =
1
σ2
x

tr(DS) (19.4)

σ2
x =

1
n

∑
‖xi − μx‖2 (19.5)

σ2
y =

1
n

∑
‖yi − μy‖2 (19.6)

where μx and μy are mean vectors of xi and yi, UDV T is the singular value
decomposition of a covariance matrix between xi and yi, S in (19.4) must be
chosen as
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Figure 19.6. outline of normalization method

S =
{
I if det(U) det(V ) = 1
diag(1, 1, · · · , 1,−1) if det(U) det(V ) = −1. (19.7)

3.2 3D Shape Analysis

In this chapter, we examine two types of analysis: supervised and unsuper-
vised analysis. The purpose of the supervised analysis is to clarify the differ-
ences among the given classes. JSA has already classified all faces into three
types based on its subjective evaluations. Through such an analysis, we can
verify correctness of the process of JSA’s classification, and then objectively
evaluate the differences using statistical analysis methods.

In contrast, the purpose of the unsupervised analysis is to discover new
knowledge through classification of the faces without any a priori standards.
This analysis may be able to produce a novel and detailed classification. As
a result, it may reveal undiscovered historical secrets. In this section, we first
describe these analysis methods.

At the end of this section, we describe a method to visualize classification
criteria. Although conventional methods for object recognition only pay atten-
tion to improvement in recognition ability, it is more important in this chapter
to clarify the criteria.
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3.2.1 Supervised Analysis: Linear Discriminant Analysis

Consider a sample space Rm. Given two classesG1, G2, discriminant anal-
ysis provides us with a scalar function f (x) to decide which class points
pbelong to ; if f (x) > 0, p belongs to Class G1 and if f (x) < 0, p be-
longs to ClassG2 [6–8].

In this chapter, we use a linear function f (x) = n·x+d as the classification
function. The reason is that the dimension of the sample space, that is, image
size (= 64 × 64, in this case), is much greater than the number of samples;
there are only 173 faces in the Bayon temple. It is preferred that the dimension
and parameters of the function are small in order to prevent a so-called “over-
fitting” problem.

Roughly speaking, the parameters of the function n, d can be determined by
maximizing SB/ST , where SB and ST are intraclass and interclass variances,
respectively. Concretely, it is necessary only to solve simultaneous linear equa-
tion in Sn = x̄(1) − x̄(2), where

S =
1

n1 + n2 − 2

(
n1∑
i=1

(
x(1)
i − x̄(1)

) (
x(1)
i − x̄(1)

)T

+
n2∑
i=1

(
x(2)
i − x̄(2)

) (
x(2)
i − x̄(2)

)T )
,

ni is the number of samples including Group i, x (i)
j is the jth sample of Group

i, and x̄(i) is the average of Group i.
Also d = − 1

2

(
n · (x̄(1) + x̄(2))

)
. Because the matrix S is not full-rank

matrix, we solve the equation using the singular value decomposition (SVD)
method while minimizing |n|.

3.2.2 Unsupervised Analysis: Hierarchical Cluster Analysis

Cluster analysis provides us with some classification of samples according
to distances among them. In this study, we employ agglomerative hierarchi-
cal cluster analysis. This analysis begins with each sample being considered
as each cluster and then proceeds to combine the nearest two clusters until
all samples belong to one cluster. As the result of this analysis, we obtain
a dendrogram as shown in Fig. 19.9. Unfortunately, we cannot determine the
correct number of clusters from this analysis only. However, distances between
the combined two clusters are useful to determine the number.

Before using the analysis, it is necessary to define the distance between any
two samples. We naturally define it as the Euclidean distance in the distance
image space [9, 10]. It is also necessary to define the distance between the
combined cluster and the other cluster. In this study, we calculate the distance
based on the Ward method, which is superior in practical use.
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3.2.3 Visualization of Differences between two Classes

As mentioned above, it is quite important to clarify the classification crite-
rion, especially for this study. Suppose we have two classes and a linear dis-
criminant function to classify them. The value of a linear discriminant function
expresses the distance between a sample point and the hyper-plane expressed
by the function. The greater the distance becomes, the more similar the sam-
ple looks to faces in the class G1, vice versa. That is, variance of the distance
helps visualize the differences between the two classes. Because the variance
is equal to displacement of the point along the direction of the normal of the
plane, the direction just expresses the classification criterion. The visualization
is quite easy.

4. Experiments

Original 3D models of faces used in this experiment are obtained by the fol-
lowing steps: We first measured 3D models of Bayon faces by the laser range
sensors, Cyrax2500 [11] and Vivid910 [12]. Next, we applied the alignment
[13] and refinement [14] methods to these models. After obtaining the models,
we made their in-depth images using the normalization method as mentioned
above. The sizes of these images were 64 x 64. In this experiment we assume
that the image data is only a 4096 dimensional vector and that usual vector
operations are applicable for the data. In this experiment we used 88 images.
We preformed the following two analyses: the supervised and unsupervised
analysis.

4.1 Supervised analysis

In this experiment, we preformed the supervised analysis based on the JSA’s
classification. Figure 19.7 illustrates the result of the analysis. The graph is
obtained by projecting all vector points of faces on the 2D flat surface that
are determined by two linear discriminant functions in order to most clearly
express the classification result.

The former discriminant function classifies Devata (goddess) and Deva (god)
and the separate plane corresponds to the y-axis. That means the right side
area of the Y axis is a female area and the left side area a male area. Although
Asura images are not used for determining the function at all, almost all of
Asura (male) data are in the male area.

The latter function classifies Deva (god) and Asura (devil) and the separate
plane corresponds to the diagonal line. That means the upper side area of the
diagonal line is a god area and the lower side area is a Devil area. Because
Devata is a goddess, and not a devil, almost all of Devata data are in the god
area.
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Figure 19.7. result of the supervised analysis

Figure 19.8. visualization of differences between two classes
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Figure 19.9. dendrogram obtained by unsupervised analysis
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Figure 19.10. scatter diagram of unsupervised analysis result

Two images reveal that when some face of the former group is morphed to be-
come similar to a face of the latter group, the blue area is dented and the red
area bulges. On the left side image, we find that the bite of Deva is dented and
the chin bulges more than Devata’s. In the same manner, we also find out about
the right side image, that the bite of Asura is dented and the chin bulges more
than Deva’s. We find that this result corresponds to characteristics of the three
types.

4.2 Unsupervised analysis

The dendrogram as shown in Fig. 19.9 is the result of unsupervised analysis.
This dendrogram shows that, as expected, the face data of the same tower is in
the same cluster.

In order to examine the result of this analysis, we used the scatter diagram
shown in Fig. 19.10. Because each vector is 4096 (not two) dimensional, a
map is needed to draw the diagram. We determine the map using the PCA

Additionally, Fig. 19.8 shows visualization of differences among three classes.
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Figure 19.11. visualization of the clusters and their differences

(principal component analysis). PCA can determine the map to minimize the
reduction of Euclidean distances caused by the map. Each color expresses one
cluster.

In this analysis, we don’t have any a priori knowledge. This diagram shows
distributions of the clusters. Although this diagram includes some outliers
(group: 5, 6, 11 and 12), almost all clusters concentrate in one area. Especially
three clusters including the typical faces are near the boundary and respectively
far away from each other. That is, we find that JSA correctly selected the more
distinguished faces as the typical faces.

Figure 19.11 shows visualization of the clusters and their differences. Each
gray image in the figure expresses an average face of the corresponding cluster.
The images on transitions express differences between the two clusters linked
by arrows. Faces included in group 1 look unlike the three typical faces. That
proves it may be impossible to classify all the faces into the three types in the
first place.
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5. Conclusion

In this chapter, we classified the Bayon faces using their precise 3D models.
As mentioned above, the Art History team of JSA classified all faces into three
types, but this classification was based on subjective criteria. Therefore, we
tried classification based on objective criteria using 3D models.

To achieve our purpose, we first measured the 173 faces by laser range sen-
sors. As the result of measurement of the faces, we made libraries of the Bayon
faces. In this experiment, we used these face model libraries.

We tried to classify using two analysis methods: One was supervised analy-
sis based on linear discriminant analysis and the other was unsupervised anal-
ysis based on hierarchical cluster analysis.

We actually classified the three types using supervised analysis. Further-
more, we visualized differences among the three types of faces by our objec-
tive criteria. The result justified JSA’s classification criteria. The classification
of our result and that of JSA’s were almost same. However, these two classi-
fications did not coincide perfectly. In our future work, we should determine
whether this is caused by failure of our analysis or by JSA’s misclassification.

Also we showed classification of all the faces using unsupervised analysis.
This analysis assumes no a priori knowledge. In this analysis, we illustrated
the justification of the selection of the typical faces and found that these pieces
of data are not on an overlapping area of clusters, but on an area where the
boundary is relatively clear. This analysis also showed difficulties in classifi-
cation. We determined that it may be impossible to classify all the faces into
three categories; there are some faces unlike Deva, Devata, or Asura. In the
future, we should further investigate results obtained by our analysis methods.
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Chapter 20

ILLUMINATION SIMULATION FOR
ARCHAEOLOGICAL INVESTIGATION

Tomohito Masuda, Yosuke Yamada, Nobuaki Kuchitsu, and Katsushi Ikeuchi

Abstract In the research of such cultural assets as wall sculptures or paintings, archaeol-
ogists have paid much attention to the appearance of the painting at that time
it was created and have argued about illumination conditions by observing or
simulating the appearance of these assets in various ways.

Since observation or simulation is often not allowed to use actual cultural
assets because they must be protected from destruction and deterioration, the
use of 3D data is necessary for the verification of archaeological hypotheses.
This process enables us to reproduce the 3D appearance realistically according
to the properties of the light sources.

1. Introduction

In the research of caves and tumuli, archaeologists often argue over when
the sculptors and painters created the carvings, since they usually imagine that
it was dark inside the cave. The idea that ancient sculptors and painters used
artificial light sources has been considered; however, this is generally ques-
tionable since there is no firm evidence of it. For example, the use of torches
would have caused soot on the wall and the ceiling, but almost no soot can be
found there [1].

In Fugoppe Cave in northern Japan, we consider that the natural light emit-
ted by the sun could have reached the interior of the cave. The reason is that
the cave probably had the same entrance as the current entrance, which is large
enough for the sunlight to pass through.

We also studied the Ozuka Tumulus in Kyushu Island, which has murals
using six pigments. If the tumulus was built with wall stones that were already
decorated, we imagine that these stones were painted under the natural light of
sunshine. But if the wall was decorated after it was built, it is possible that the
paintings were done under artificial light, such as light from taper. In the latter
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case, it is doubtful whether ancient artists could see well enough to paint these
decorations by the taper light.

In this chapter, we verify the possibility that they were decorated in the
sunlight focusing on the shading or shadowing over the carvings in Section 5
and the recognition of colors used for murals under sunlight or taper light in
Section 6. We consider only the change of shade and shadow as time passes
in a day, namely, the change of areas illuminated by natural light resulting
from the sun in Section5. In Section 5, we do not consider the color spectrum
because the Fugoppe cave has no color in the area where carvings were done.
In Section 6, we consider the color appearance difference under different light
sources (spectrum) in Section 6. In Section 6, we do not consider the spectrum
change as time passes; we use the daylight spectrum as observed at noon in the
spring equinox (fine weather).

Our targets for this study are the Fugoppe Cave in the former case, and
the Ozuka Tumulus in the latter case. As topics in this chapter, we describe
researches similar to ours, and then we explain how to obtain geometric and
photometric information to reproduce their 3D appearance of these objects in
computer graphics. After that, we show the results of our simulation of the
Fugoppe Cave and the Ozuka Tumulus. Finally, we describe the knowledge
obtained from the simulation.

2. Related Work

Archaeologists analyzed the spectrum of each color or the 2D information of
pictures taken by a camera [2, 3]. But we argue that the 3D shape information
is essential in order to restore the whole appearance of decorated walls with
complicated 3D shapes that are sculptured or painted on a wall.

Caves and tumuli are usually located under the ground, and it is hard to
accurately recognize their relative positions with regard to the earth’s surface.
A number of researchers have argued that the use of the 3D data is suitable
for the investigation of the caves, and have proposed their 3D models [4, 5].
Sellers et al.[6] measured the Kitley cave in England by using an ultrasonic
sensor. Beraldin restored the 3D textured model of Byzantine Crypt at Santa
Cristina in Carpignano, Italy [7], which has many frescos that are preserved
in good condition. Brown et al. [8] measured the frieze of the Cap Blanc in
France, and Deblin et al. [9] used their data for their archaeological study.
They restored the appearance under the torches inside the cave in order to
investigate shadow and shade motion and the visual effect resulting from the
flames of the torches. Cruz-Neira et al. [10] developed a projection system,
called “CAVE” in order to express the atmosphere unique to the inside space
of the cave as virtual reality contents. Similarly, Toppan printing Co., ltd. used
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Figure 20.1. (1) Merging. Merging can integrate multiple aligned data sets (left side) into the
single data set (right side). (2) Voxel division by octree. Octree provides the effective merging
because voxel division is adaptively performed only where the object surfaces exist.

its theater for an interactive virtual reality display of cultural assets and world
heritage objects [11].

3. Acquisition of Geometric Information

The entire 3D shape of the Fugoppe Cave is measured by using two types of
laser range sensors. The first one can cover a wide area, but cannot guarantee
a highly accurate measurement: it cannot capture the decoration on the wall.
The other covers a much narrower area, but can measure the 3D shape with
much higher accuracy than the first one. We therefore measured the whole
shapes and the decorated areas by using the CYRAX 2500 and the VIVID
900, respectively, and then aligned two types of the measured data sets. The
registration we used here [12] adopts the simultaneous strategy of alignment
ordering, so it can reconstruct their 3D models accurately.

As a wide range sensor, we used the CYRAX 2500 (Leica) in the Fugoppe
Cave, and the Imager (Z+F) in the Ozuka Tumulus. As an accurate and
narrow range sensor, we used the VIVID 900 in both sites. We obtained 18
data sets in the Fugoppe Cave, and 171 (54 by CYRAX and 117 by VIVID)
data sets in the Ozuka Tumulus.

As the last step of the 3D shape restoration, the registered multiple data
sets are integrated into a single mesh (merging) (Figure 20.1-(1)). This is
performed by calculating the signed distance between the center of the lattice
and the object surface on each lattice. Calculated signed distance fields are
converted into a single mesh model by using the marching cubes method [13].

Since each measured data set has random measurement errors that can affect
the final results, the consensus is taken among the multiple measured data sets
representing the same surface [14]. Also, octree representation is employed
to adaptively and effectively divide the lattice unit that covers only the object
surface (Figure 20.1-(2)).
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4. Acquisition of Photometric Information

Besides 3D shape, to restore the 3D appearance of the object, color informa-
tion about the object’s surface (texture) is needed. Texture images are captured
separately from the 3D data, so the registration between 3D data and texture
is required. Here we use a method that matches the characteristic property of
a 2D texture image and the edge of reflectance image subsequently obtained
from the laser range sensor [15].

The reflectance image represents the reflection intensity of laser light on
each measurement point, and these are measured simultaneously by the same
laser range sensor; thus, the reflectance image coincides with the 3D measured
data.

The reflectance image and color image have similar characteristics in the
respect that they affect the material, shape and color of the object’s surface.
For example, the Cyrax 2500 uses a green laser diode; in this wavelength, the
reflectance changes according to the difference of surface color and material,
so their boundary is shown as the edge in the reflectance image. On the other
hand, the color image has similar boundary edges, since the different material
generally has the different color. The jumping edge and contour are similarly
shown in both images.

Registration between the 3D shape data and 2D color image is performed
by iteratively minimizing the squared sum of the corresponding edge of the
reflectance and the color image in a 3D coordinate. In order to reduce the
influence of the outliers, this iterative minimization is implemented by using
conjugate gradient method and the maximum likelihood method whose distri-
bution function is a Lorentz function.

For the texture of the Fugoppe Cave, we used the pictures acquired by the
Yoichi Town Board of Education (Figure 20.2-(1)). They are captured by a
camera made by HASSELBLAD, inc., with a strobe light and illumination. In
the Ozuka Tumulus, we used the pictures captured by D1x (Nikon).

5. Fugoppe Cave

The Fugoppe Cave is a natural cave in tertiary tufaceous rocks located in the
Yoichi town, Hokkaido, in northern Japan. The cave has a lot of petroglyphs
(rock carving) of Zoku-Jomon period (A.D. 1C - 5C), and has been designated
as a national historical site. Inside the Fugoppe Cave, there was an observation
room that consists of windowpanes until 2001. The windowpanes were tem-
porally removed for reconstruction, and on that occasion we measured the 3D
data inside the cave for preservation of the present condition. Later, the new
windowpanes were built (Figure 20.3), and it became impossible to observe the
natural light incidence in direct observation. This presented a difficulty, since
we began our project to solve the problem of the lighting inside the cave after
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Figure 20.2. (1) Color images of the Fugoppe Cave, used as the texture. (2) Acquired whole
shape of the Fugoppe Cave with texture. (Data Informant: Yoichi Town Board of Education)

Figure 20.3. Inside and outside the observation room of the Fugoppe Cave. (Data Informant:
Mr. Nobuaki Kuchitsu (National Research Institute for Cultural Properties, Tokyo.))

the rebuilding. As a consequence, we required computer simulation by using
the 3D data we had already obtained (Figure 20.2-(2)). As the environmental
information in this simulation, we took the correspondence between the 3D
model of the cave and its position on the earth’s surface, calculate the ecliptic
at the latitude of the cave, and then reproduced the change of appearance to the
inside according to the position of the sun in our coordinate system.

5.1 Correspondence between 3D Model and its Position
on Earth’s Surface

In order to restore the interior appearance of Fugoppe Cave under sunlight,
the correspondence between 3D model and its position on the earth’s surface
has to be taken. The surface registration of the cave model was performed by
using principal component analysis for the estimation of the cave surface data,
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Figure 20.4. Carvings inside the Fugoppe Cave. (Data Informant: Mr. Nobuaki Kuchitsu
(National Research Institute for Cultural Properties, Tokyo.))

which was extracted from the whole 3D model (Figure 20.5-(1)). Direction
registration was performed by using multiple reference points, including the

3D model, where the latitude, longitude, and altitude were known (Figure 20.5-
(2)).

5.2 Orbit and Light Sources Setting for the Sunlight

The ecliptic was assumed here to be a simple circular orbit which is defined
from the gradient of the earth’s axis, the latitude, and the earth’s position in
the revolution surface. The circular orbit is translated according to the earth’s
position in the revolution, that is, the season (Figure 20.5-(3)). In order to
simplify the time setting of a day, mean solar time was adopted. The sun
always crosses the meridian at noon under mean solar time.

In existing computer graphics techniques, the sunlight is usually assumed
to be parallel light rays. However, to be more physically correct, the entire
light from the sky, resulting in sunlight, should be represented as the skylight.
Skylight is the hemispheric light of infinite radius as the collection of surface
light patches changing the brightness distribution according to the position of
the sun. The rays emitted from the sun are diffused because of the floating
matter in the atmosphere and such diffused light is regarded as the indirect
light from the entire celestial sphere. Perez proposed the ALL-WEATHER
MODEL in which all the sky models were classified into eight categories [16].

Skylight changes according to the season, time of the day and the state of the
atmosphere. The International Commission on Illumination (CIE) defines the
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Figure 20.5. (1) Registration of the ground surface. (2) Registration of the direction. (3)
Ecliptic according to the season and the time.

typical brightness distribution of the skylight as “CIE Standard Sky Luminance
Distribution”. This distribution is determined by direct horizontal irradiance
(the irradiance of the direct light) and the diffuse horizontal irradiance (the
irradiance of the indirect light, namely, the light diffused by the floating matter
in the atmosphere).

5.3 Light Interreflection

The cave is illuminated by the direct sunlight and the indirect light that is
reflected by the surfaces inside the cave. In computer graphics, indirect light is
usually created by the radiosity method which considers the interreflection of
light among objects. In the radiosity method, the illumination brightness of the
object’s surface, which is assumed to be the Lambertian surface, is calculated
as the sum of the brightness of the direct sunlight and the indirect light from
other surfaces.

In this chapter, we first assume parallel and direct light; and later, we relax
the assumption by using the skylight and the entire light, including the indirect
light. In our simulation that considers indirect light as well, we use radiance
[17] which enables the radiosity method. Although, in the real world, indirect
light is reflected repeatedly; radiance is approximated by the gradual radiosity
method that sets the number of interreflections of the light. In this method, one
or two interreflections are enough for the creation of the shadow and shade, and
more than four interreflections are needed for calculation of the illumination.
In our simulation, we use four interreflections.

5.4 Simulation of the Appearance of the Cave in Sunlight

We reproduce the appearance inside the Fugoppe Cave under the above
conditions, as shown in previous sections, with the computer graphics. Here
we consider the following issues.
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The changes in appearance of the cave in sunlight at each equinox and
solstice.

The shadow movement of the sculptor standing against the south wall
and the west wall.

In this chapter, we describe how we first observe the shadow cast by using
direct light and assuming that the sunlight is a parallel light source. We ignore
the changes of the luminance and the spectrum of sunlight because the inside
of the cave is illuminated for only four or five hours. The region that the direct
light reaches is shown by its color obtained as the photometric information, and
other regions are shown as black. We use a proper 3D human model created
by CAD for the shadow movement simulation of the sculptor.

The simulation results are shown in Figures 20.6 and 20.7. We first observe
the deepest part of the south wall inside the cave. At the winter solstice, di-
rect sunlight does not reach the wall during the daytime (Figure 20.6-(1)). At
the spring/autumn equinox, it reaches the wall at 6:00 a.m., but it soon be-
comes dark (Figure 20.6-(2)). On the other hand, the sunlight reaches the wall
from 4:00 a.m. to 9:00 a.m. during the summer solstice (Figure 20.6-(3)). In
summary, the direct sunlight reaches even the deepest part of the cave during
fine weather for over half of a year, and lasts for about five hours a day at the
summer solstice. Moreover, even if a sculptor stands there under the direct
sunlight, the shadow is not cast on the wall, and has no effect on his or her
work (Figure 20.7).

The simulation result under the interreflected light as well as direct light, is
shown in Figure 20.8. This result shows that it is sufficiently bright to sculpt
inside the cave.

5.5 Consideration of Ancient Outside Effect

From this simulation, it is known that direct sunlight reaches the deepest
part of the Fugoppe Cave at a certain time. But this simulation is based on
the current conditions of the cave, and it is possible that the ancient conditions
were different.

It is too difficult to accurately estimate the ancient conditions. The Fugoppe
Cave probably had the similar entrance in the same direction as the present,
since the ancient cave dwellers are imagined to pass through the entrance, judg-
ing from the distribution of the excavated relics. First, the floor of the cave is
presumed to be lower than it is at present because there are a lot of carvings
nearby the floor, so this added depth would have made the cave brighter in an-
cient times. Second, the width of each wall would be different from the present
width since the carvings remain near the current entrance. Third, the current
ceiling may be higher than the ancient ceiling because there is evidence that
the ceiling of the cave crumbled and raised the height level, but the shadow



Illumination Simulation for Archaeological Investigation 427

cast in the deepest part before and after the direct sunlight reaches it results
from the wall, so the ancient illumination condition would be almost the same
as the present. In other words, the height of the ceiling would not have brought
a significant change in the lighting.

Then we consider the outside obstacles for the sunlight. To the east of the
Fugoppe Cave, there is no high mountain that can obstruct the sunlight; in-
stead, there is a hill of ±50m in height, which does not yield a shadow inside
the Fugoppe Cave, judging from the numerical analysis of the data on the map.
It is difficult to know the ancient vegetation, but the entrance would not have
been covered by some plants other than those currently present since ancient
vegetation is consider to have been similar to the present one [1]. Therefore
we think that the ancient illumination condition of the cave would be almost
the same as the simulation result.

In other words, we consider that the direct sunlight would reach inside the
Fugoppe Cave in ancient times at certain times and seasons, although the sim-
ulation may not be exact, because of the subtle differences in the ancient con-
ditions. Moreover, the simulation that considers the interreflected light shows
that it would be sufficiently bright inside the cave for a sculptor to work.

Finally, we consider the distribution of the carvings according to the effect
shadows might have on the sculptor. As shown in Figure 20.7-(1), the shadow
of the sculptor standing against the south wall would have been cast on the
right side. If he or she were right-handed, the illumination condition would be
better there. In the case of the west wall, it would have been worse because
the shadow would have been cast just at the front as shown in Figure 20.7-(2).
Actually, more carvings remain on the south wall than on the west, and this
fact coincides with our theory.

6. Ozuka Tumulus

The Ozuka tumulus is a burial mound with a square front and a round
back (Figure 20.10), located in the town of Keisen in Fukuoka prefecture in
Kyushu Island (Figure 20.9). It is said to have been built in the middle of the
six century A.D., and has been designated as a Special Historic Site because
of its brilliantly painted inside wall (Figure 20.11). Six colors are used for the
painting, namely, red, yellow, white, black, green and gray [18]. The inside
paintings (murals) are supposed to have been done in commemoration of those
who are buried in the tumulus, and thus they are valuable as ancient burial
accessories (Figure 20.11). In order to verify the color recognition, we would
need to take the tumulus to pieces, and to burn a taper for light inside the
cave, but they are impossible. Instead, we used 3D techniques to restore the
appearance of the painting in sunshine and taper light and to represent the
appearance in computer graphics.
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6.1 Texture Images and Color Spectrum

Our aim is to investigate the difference in appearance of paintings in sunlight
and in taper light, so the color appearance has to be theoretically restored. We
explain the details of their color tone correction in this section.

In 3D textured modeling, we usually use pictures taken by a digital camera
as texture images. Though such pictures can be captured in high resolution,
they do not represent accurate colors because the color tone changes accord-
ing to environmental conditions, such as a lighting condition. This effect is
formulated as follows.

I(λ) = E(λ)S(λ), (20.1)

where

I : reflected spectral color signal (measured object color),

E : illumination spectral power distribution (illuminated light color),

S : surface spectral reflectance,

λ : visible wavelength.

The appearance of an object is very different if illuminated under a different
light, for example, incandescent light vs. fluorescent light.

Moreover, to capture color for each pixel, most cameras record the values of
three colors (usually red, green, and blue, RGB) for visible wavelength, but the
values depend on the type of camera. This fact is described in a mathematical
form extended from equation (20.1) as follows:

Pk =
∫
E(λ)S(λ)Rk(λ)dλ, (20.2)

where

k : color channel; RGB,

Pk : camera response,

Rk : spectral response curve for each channel.

Note thatRk changes if a camera changes.
An accurate acquisition method for color information is spectrometry [19],

which can obtain color signals of continuous spectrum I(λ) independent of
the type of camera. Since we can measure illumination spectral color S(λ)
as a spectral color signal of a reference object (usually a white object) illu-
minated by objective light, we can calculate I(λ) from equation (20.1). By
using spectral color signals, we restore the color appearance of an object under
an arbitrary light in computer graphics more accurately than using RGB data
because we have more accurate color information [20] [21].
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Additionally, these spectral data can be converted to RGB data. However,
the resolution of spectrum images cannot compare with that of camera images.
So using spectrometry takes a huge amount of time to obtain the whole color
of objects.

In order to take advantage of both methods, we apply spectrum information
to high-resolution camera images [22]. Our method needs the spectrum of an
environmental light and an object within the environment, as well as camera
images, as input data. The environmental light is an illumination color dis-
tribution component, and the reflection component of an object is calculated
from the spectrum of the environmental light and the object’s surface. The sur-
face spectral reflectance component information is registered into the camera
images.

Finally, the color appearance is restored by using the reflection component
and illumination component of the environmental light under which the scene
is observed.

In our photometric measurement, we obtained about 600 pictures and 21
spectrum data sets by using D1x (Nikon) and SpectraScan (Photo Research
Inc.), respectively.

6.2 Sunlight and Artificial Taper Spectrum

As the environmental information in this simulation, we used spectrum in-
formation of two kinds of environmental light: sunlight and taper light. To
obtain the spectrum of sunlight, we measured the white reference illuminated
by the sunlight as observed at noon in the spring equinox (fine weather). The
spectrum of taper light was measured by a spectrometer. We also measured
the spectrum of the white reference illuminated by the fire in the fireplace con-
structed from bricks in the exhaust system (Figure 20.12). Figure 20.13 shows
the obtained spectrum.

6.3 Experimental Results and Consideration

On the basis of the above method, we restored the textured 3D model of
the Ozuka tumulus. Here we assumed that the amount of light of an artificial
taper is the same as that of sunlight because we do not know what the ancient
artists actually used as an artificial light, so we cannot gauge the brightness of
an artificial light.

We focused on continuous triangle patterns (Figure 20.15) as typical ones of
the Ozuka tumulus. Figure 20.14 shows the result when the wall was exposed
to daylight (no ceiling cover) and also when the wall was illuminated by tapers
from the two stands inside the tumulus while the ceiling was covered. In the
former case, we can recognize the triangle patterns. But in the latter case, we
cannot recognize them.
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7. Summary

In this chapter, we showed the illumination simulation for archaeological
simulation using 3D shape model. From the above simulations, we can assert,
against the established theory of ancient sculptors having to do their carving
with an artificial light in the dark environment, and we can support the possi-
bility that they worked inside the cave in sunlight if they chose the optimum
season and time for working.

In such a model as caves and tumuli, it is difficult to reconstruct the whole
3D shape by aligning their partial data. The registration we developed employs
the simultaneous strategies, so the complete reconstruction is enabled.

Our simulation results of Fugoppe Cave and Ozuka Tumulus were exhib-
ited at Fugoppe Cave Museum in the Yoichi town, Hokkaido, and Kyushu
National Museum in the Dazaifu city, Fukuoka. Our approaches to the archae-
ological hypotheses are considered to be useful in this field.
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(1) Winter Solstice (2) Spring/Autumun Equinox (3) Summer Solstice
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Figure 20.6. Simulation results. There are carvings inside the area illustrated by red circles.
As the season changes from winter to summer, the direct sunlight reaches the walls for more
hours.



434 DIGITALLY ARCHIVING CULTURAL OBJECTS

AM  5:00

AM  6:00

AM  7:00

AM  8:00

AM  9:00

AM 10:00

AM  5:00

AM  6:00

AM  7:00

AM  8:00

AM  9:00

AM 10:00

(1) Against the South Wall (2) Against the West Wall

Figure 20.7. Simulation results on the summer solstice with a man standing against the wall.
There are carvings inside the area illustrated by red circles. This shows the sculptor’s shadow
does not darken his or her working space.

Figure 20.8. Simulation result considering the sunlight interreflection. This result shows the
inside is brighter than expected.
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Figure 20.9. The projection map of the Ozuka tumulus. The right figure is the enlarged view
of the thick line area in the left figure. (Data Informant: Kyushu National Museum)

Figure 20.10. The aerial map of the Ozuka tumulus. The tumulus is located at the circular
area. (Data Informant: Keisen Town Board of Education.)
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Figure 20.11. The mural inside the Ozuka tumulus. Various patterns were painted in the tu-
mulus to decorate the tombs of those buried there.
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Figure 20.12. The spectrum measurement of a taper light. In this experiment, we measured
the light from burned wood as an artificial light.
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Figure 20.13. The obtained spectrum data. The upper and lower histograms respectively show
the spectrum data of sunlight and a taper light.
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Figure 20.14. Simulation Results. The color appearance, in the area enclosed by curves in
Figure (1), is restored. Figure (2) and (3) show the color appearance restoration under the
sunlight and taper light, respectively. We can recognize the pattern in the former figure much
more clearly than that in the latter.
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Figure 20.15. Continuous triangle pattern.



Chapter 21

EDITING, RETRIEVAL, AND DISPLAY SYSTEM
OF ARCHEOLOGICAL INFORMATION ON
LARGE 3D GEOMETRIC MODELS

Yasuhide Okamoto, Takeshi Oishi, and Katsushi Ikeuchi

Abstract One of the promising directions for utilizing scanned 3D models is to pro-
vide computer graphics models with various types of archeological information.
However, very huge models and variety of information cannot be handled easily
on common PCs because of limits to performance of the hardware and to com-
patibility between a variety types of data format. In this chapter, we propose a
system which enables users to browse 3D models, retrieve information, and edit
associations. Firstly, on our system, users can browse models and information
easily and quickly. For real-time 3D browsing, it achieved highly interactive
rendering by adopting multi-resolution meshes. Secondly, users can associate
and edit information with 3D models with easy mouse actions. In these pro-
cedures, users can effectively select specified regions by interactive tools using
Lazy Snapping algorithm and by mapping interface of drawing images.

ccess users

33DD mmooddeell aass mmeeddiiaa toto iinnddeexxmationVarious types of Inform

Embed / Access

ciatiAssociation

users

Figure 21.1. The usability by relating 3D models and other information
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1. Introduction

In the field of computer vision, there is an application that converts real ob-
jects into digital 3-Dimensional models for the preservation of cultural prop-
erties ([6, 8], and described in previous chapters). The obtained models can
be used for many purposes, for example, scientific analysis and simulation for
archeological research, digital storage, repairing, and public viewing.

At the same time, many cultural properties have been researched by arche-
ologists for a long time, and the information about them have been stored in
various forms such as text documents, images, drawings, and numerical ta-
bles, which have cultural and academic value. In some objects, the quantity
of stored information is so huge that the information cannot be managed effi-
ciently for non-experts. So, the information is not effectively utilized except in
few specialistic research.

To effectively utilize such information, the management system for many
kinds of information is desired. 3D models are very appropriate as tools to vi-
sualize managing operation of related information (Fig. 21.1). In this chapter,
we propose such a management and visualizing system.

There are some applications that associate 3D models and related informa-
tion. However, most of those focus on simple 3D models with a small number
of triangles such as CAD models, and are unavailable for massive meshes. The
system proposed in [3], locates the related information on the 3D model ob-
tained by scanning. Information displayed includes analysis of research such
as graphs and charts, and many kinds of images and pictures. Some web ap-
plications have been proposed that map information and notes on landmarks to
a 3D map of the earth; i.e. Nasa World Wind[2] and Google Earth[1]. These
applications propose 3D geometry information, texture images, and embedded
information as landmarks through networks.

When implementing management system using 3D models, we have some
problems. Firstly, this system must enable general users to view and edit in-
formation and 3D models intuitively. In the case of conventional 3D software,
the operating methods are very complex and users must learn how to operate
it. Therefore we need to propose operation interfaces that are easy to use. Sec-
ondly, the system must support huge 3D models. Nowadays the capability of
computer processing is growing. However, the huge scanned data cannot be
handled on current common computers because of limits to memory capacity
and graphics processing performance. To solve it, we need to adopt a novel
algorithm to handle very huge data.

Our proposed system has following two major features.

Display function of 3D models and related information

Editing association function between 3D models and information
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Figure 21.2. Access to related information from 3D models

For efficient rendering of huge 3D models, we adopt multiresolution scheme,
and minimize the processing cost. Users can also access associated informa-
tion with the model when they browse it in real-time. Because related infor-
mation is recorded as link to the real data, users can access the information
regardless of the data format. Additionally, users can associate information
with a specific region on the 3D model. These operations in the associating
procedures are realized by easy mouse action such as clicking, dragging and
dropping.

In this chapter, we describe the overview of our proposed system in the
section 2, explain about the view and browsing function in section 3, and the
function editing associations in section 4. After that, we explain the result of
experiments in section 5, and conclude in section 6.

2. Overview of Proposed System

Our proposed system has two major functions. One is the browsing func-
tion; which users can view a 3D model in real-time and can access related
information to the model. The other is the function for editing associations
between 3D models and related information.

2.1 3D Model and Information Browser

By using the system users can interactively view the 3D model in real-time
from desired viewpoints. To avoid processing stall when rendering huge mod-
els, we adopt the multiresolution rendering. The method converts the input
model into tree structure which has hierarchical resolution, and traverse and
load only the nodes which are needed when rendering.

At the same time users view a 3D model, users can access and browse re-
lated information which is associated with the specific region on the 3D model
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(see Fig. 21.2). When users select a specific region in viewing, the system out-
puts the overview and detail of associated information on the system’s browser.

2.2 Association Editor

The function for editing associations enables users to make and edit associ-
ations between information and specified regions.

To make associations, users firstly define specific regions on the target 3D
model. To define regions can be operated by easy mouse actions. We im-
plements some types of tools for selecting specific regions intuitively. After
defining regions, users can make associations by selecting files storing related
information or database records, and moving them to the defined region by
mouse actions. The data formats of associated information which our system
supports are text documents, images, database records (tables), and links to
web pages or files.

3. Browsing

On our proposed system, users can freely view the target 3D model from
desired viewpoints in real-time, and can browse the information associated
with the model.

In the case of rendering 3D models with a very huge number of triangles, the
conventional method cannot maintain interactivity because of limits to memory
capacity and graphics processing performance. Therefore, we need the novel
method for real-time rendering.

In this section, we explain about the detail of efficient rendering algorithm
and browsing function of information of proposed system.

3.1 Real-Time Rendering for Huge Meshes

On our system, we use LOD method for huge mesh rendering; which rep-
resents huge meshes in hierarchical design. There are two major rendering
method using points ([9, 11]) and polygon ([4, 12]) as rendering primitives.
We chose polygon based method because of rendering quality on our system.
We use a binary tree as the hierarchical structure described in [4].

3.1.1 Building Hierarchy

We build the hierarchical representation in the following procedures.

1 Recursively splitting the input mesh into two meshes, and building a
binary tree.

2 Traversing in the bottom-up order, and recursively merging and simpli-
fying intermediate nodes.
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Simplified

Precise

Figure 21.3. The hierarchy of patches for multiresolution rendering

The input meshes are split by using graph-cut algorithm which use the dis-
tances between neighboring normals as weights of the graph. We implemented
the splitting procedure by using the Metis library [7]. Splitting operation is
continued recursively until the number of polygons of each node is under pre-
defined number 21.3.

After that, we traverse the binary tree in the bottom-up order. In traversing
time, we merge two child nodes, simplify it until the size is under the prede-
fined number, and assign it to the parent node. For the simplifying algorithm,
we use the method in the way described in [5]. When simplifying step, the
consistency between neighbouring sub-split meshes in different simplified lev-
els cannot be maintained. This inconsistency can generate holes or artificial
patches along the boundaries. To avoid it we constrain the simplifying opera-
tion not to be applied to the polygons along the boundaries.

3.1.2 Multiresolution Rendering

When rendering time, we traverse the built hierarchy in the top-down order
and select appropriate nodes which can be rendered with enough resolution on
the screen. The system loads only selected nodes from secondary memory and
renders. In the traversing procedure, for efficiency, invisible nodes obviously
on screen and those sub-tree can be skipped because the meshes are outside of
view frustum or the normal vectors are out of the view direction. Judgement
whether the node is rendered depends on the quadric error value of the child
nodes. If the scale of error value on screen is under the desired accuracy,
we load and render the node. Otherwise, traverse is continued recursively.
For memory efficiency, the data of each node is managed by FIFO algorithm,
unused data for a period of time is released from main memory.
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3.2 Browsing Information

At the same time that users are viewing a 3D model, they can find the related
information to the object. On the viewer, the regions with which information
is associated are highlighted. In particular users point the associated region by
mouse, the associated information with the region is displayed on the tempo-
rary dialog; which shows the label, thumbnail, and the summary. If users click
the highlighted region, they can browse the list of associated information on
the system’s browser (see Fig. 21.2).

The associated information is managed with some parameters; which are ID
of associated region, summary, detailed description, thumbnail images, and tag
words; in the database system. When users access, the recorded information is
retrieved by using existing database function. Retrieved information is casted
as HTML format, and output on the browser. On the browser, users can view
related documents, images, other linked web pages and files to the model. In
addition to this, users can add, edit, delete information on the browser.

4. Associating Information

On our system users can edit associations between the target 3D models and
related information. The associations procedure is operated by the following
way.

1 Defining the specified regions to which information will be assigned

2 Associating the information by drag-and-drop

3 Editing the ID, summary, and description of associated information

Firstly, users define the specified regions on the target 3D model which they
want to associate related information with. We propose very interactive tools
for region definition to support the regions with very complex boundaries.

4.1 Region Definition

There are some conventional tools for selecting specified regions on 2D
images. However, common users cannot handle those tools skillfully without
enough training. In the case of 3D images, particularly, it is harder to select
precisely because of the depth on images. In addition to it, the 3D models
obtained by laser scanning are very huge and complex, so it is costly for users.
Therefore we propose users very effective tools to select complex 3D regions
intuitively and without extra cost.

4.1.1 Interactive Tools
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Figure 21.4. Segmentation of 3D regions by Lazy Snapping (The yellow marker means fore-
ground, and the blue marker means background)

Lasso tool. Lasso tool is the most common method to select specified
regions on 2D images. By tracing the boundaries by lasso, users can select
a region intuitively. However, it is difficult and time consuming for common
users to precisely select a region by this tool using mouse actions.

We implemented the lasso tool available on 3D images. The system projects
the resulting region which users select on the 2D image onto the original 3D
model. To avoid selection backface which users do not want to select, we split
the input model into small segments, and select only the segments which are
rendered on screen by checking the segment ID.

Selection tool using Lazy Snapping. Lazy Snapping[10] is a very inter-
active method to split a 2D image into foreground and background areas. We
apply this method to the definition of specified regions on the 3D images.

In the methodology of Lazy Snapping, firstly, users draw two types of mark-
ers: the ones are yellow markers for foreground, and the others are blue for
background (see Fig. 21.4). We describe the 2D image as a graphG, and solve
the labelling problem of G starting from F and B which are nodes drawn by
users’ markers. To solve it, we convert the labelling problem into the min-
imization problem of the following equation. Moreover, we apply the Lazy
Snapping method to 3D images like the method described in [13].

E(X) =
∑
i∈V

E1(xi) + λ
∑

(i,j)∈E
E2(xi, xj) (21.1)

In equation 21.1, E1 is the distance energy between each node and belong-
ing set (foreground or background). And E2 is the similarity between neigh-
boring nodes along the boundaries of foreground set and background set. As
parameters of each node the color is used in the 2D image version. We also
use the normal vector and depth value in the 3D image version. After labelling,
users can obtain the desired region on the 3D model.
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Background
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Figure 21.5. Segmentation by Lazy Snapping Like Lasso Tool

Lazy Snapping selection like lasso. Lazy Snapping selection requires less
work than lasso selection because of the robustness and the automation. How-
ever, in the some case users need more operations. Lazy Snapping method is
not intuitive because users cannot smoothly connect drawn markers by them-
selves to selected regions obtained by Lazy Snapping algorithm. That is why
users may need to draw extra markers when selecting fuzzy regions.

To support those case, we propose another selection tool which combined
lasso and Lazy Snapping. The procedures of this method are described in Fig.
21.5. Firstly users draw a lasso marker along the boundaries. We set the size
of lasso marker to be bold for robustness. Secondly, the yellow markers and
blue markers are drawn automatically and invisibly for users as in Fig. 21.5.
After that, the resulting region is calculated by Lazy Snapping algorithm.

This tool has both intuitive affordance and robustness of a lasso tool and
Lazy Snapping . So, it is very effective tool. We describe the effectiveness in
section 5.

4.1.2 Automated Selection Using Drawings

The selection tools described above, are very effective when users want to
record note or comment on the target model sporadically. However, in the
case that researchers hope to associate information with every part on target
object and manage systematically, these tools are inadequate. For example, in
the case of the restoration activity of a cultural building constructed by stones,
experts engaging in restoration hope to record the state of each stone. In this
case, it is hard to define regions of all stones by mouse actions.

In those restoration activities for cultural properties, researchers often record
the drawings of target objects. Therefore, we implemented another selecting
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Figure 21.7. The relating operation by simple actions

tool which can define the specified regions on entity of the building by using
the recorded drawings.

The procedure of selection by drawings is as follows, and is described in
Fig. 21.6.

1 Inserting a drawing from one side of the target object

2 Editing the resulting segments on a 2D image split by automatic seg-
mentation

3 Mapping the segments onto the 3D model

In step 2 of the above procedure, we use a simple region growing method
to split the drawing image into small segments. After that, users select re-
quired segments and delete needless ones. Finally, the resulting segments are
mapped onto the target 3D model. For mapping of the resulting segmentation,
we implemented the interface on which users can map it manually.

4.2 Edition of Association

After definition of regions, users can associate many types of data with
those regions; our system supports text documents, images, records, tables
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model Mercede Church Nara Buddha Bayon Face Bayon Towers
Input[tris] 1,148,939 3,109,824 5,922,790 9,343,426

Preprocessing[sec] 340 818 1641 3055
Rendering time[fps] 32.8 24.7 13.8 16.4

Table 21.1. The result of preprocessing time, rendering speed, and amount of occupied mem-
ory

in database, and links to web pages and other files. For association, users drag
an icon of a target file from Explorer, and drop it on a defined region (see Fig.
21.7). When users associate information, it is recorded with some other param-
eters in database system. The parameters are an ID of associated region, label,
summary, detailed description, and thumbnail. Those parameters are used to
retrieve the information when users access the region.

5. Experimental Result

In this section, we evaluate the performance of our proposed system. We
evaluate rendering performance and region definition tools by experiments and
user study. In addition, we introduce the project using our system.

We have experimented on commodity PC, for rendering on an ATI Radeon
9800XT, processing on a 3.2 GHz Intel Pentium4 processor with 2GBytes of
RAM. Our system runs on Windows XP, and it has been implemented using
C++ with OpenGL.

5.1 Rendering Performance

We evaluated the performance of building multiresolution model and ren-
dering speed. We describe the result in Fig. 21.1. We test four models whose
number of polygons is from one million to ten million.

The time consumed in constructing multiresolution model is shown in the
row of Preprocessing. In the case of Mercede Church (1M polys), it took 6
minutes in preprocessing. In other case, we can find the commensurate results
with the input size. The order of consuming time is practical enough.

For evaluation of rendering performance, we measured the frame rate de-
scribed in the row of Rendering time. In the case of Bayon Face (6M polys),
the average frame rate is 13.8 fps, it is quick enough to render in real-time. In
the other case, we can observe that the frame rates are faster. The reason is
because we use multiresolution scheme for rendering.

From those results, our system can build the multiresolution model, and
render it.
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Figure 21.8. The result of consumed time for segmentation (upper:by regions, lower:by users)

5.2 User Study for Selection Tools

To test the usability of our interactive selection tools, we have conducted a
usability study. We select eight subjects; two subjects are novices, other two
are experts for 3D softwares, and others are intermediate users. The study of
selecting operations have two times. We gave subjects ten region selecting
tasks by using three selecting tools; which are a lasso tool, a Lazy Snapping
tool, and a selection tool combined lasso and Lazy Snapping. We measured the
consumed time and error rate which is the area selected in error. We describe
the result in the followed charts (see Fig. 21.8, 21.9).

In figure 21.8, we describe the average consumed time by using three differ-
ent tools. The upper one shows the results by regions and the lower one shows
ones by subjects.

Firstly, by comparing a lasso tool with Lazy Snapping by regions, we can
find advantages in the case of region 1, 2, 6, and 7, which are larger than
other regions. But in the other case, we cannot find a decisive advantage.
Comparing a lasso tool with a combined tool in a similar way, we can find
major advantages in any region.
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Figure 21.9. The result of errors to consumed time for segmentation

Secondly, comparing the results by subjects, almost all of subjects required
less time by using Lazy Snapping than a lasso tool. Moreover, the results of a
combined tool are much less than those of Lazy Snapping.

Finally, we evaluate the time and error by three selecting methods. On this
diagram the lower the value of both parameters, the better the results are. Ob-
serving the distributional condition, we figure that the most effective method
is the combined selecting tool. The distribution of samples of the method and
Lazy Snapping is very analogical with regard to error. However, the combined
method has an advantage from the aspect of time.

From these experimental results, we are sure that the combined selection
method is the most efficient operation of the three methods.

5.3 Case Study

Our target is to build a system for South Library of Bayon Temple in Cam-
bodia. To save Bayon Temple from destruction, The members of Japanese
government team for safeguarding Angkor (JSA) engage in restoration activ-
ity. We are developing this system as a part of the activity.

The drawings of South Library are drawn from four cardinal directions for
recording of the state of every stone. In the same way, with our system, users
can record information in region of every stone. We can define the regions
assigned to every stone by using the interface described in 4.1.2.

In this mission, we are developing the 3D database system for restoration
of South Library. Figure 21.10 is a snapshot of the database system. In this
system researchers can record and manage each stone’s information such as
stone ID, the condition, and photographs.
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Figure 21.10. The 3D Database System for South Library of Bayon Temple.

6. Conclusion

In this chapter, we proposed the system in which users can deal with both
3D models and other information. In this system, users can view the target 3D
model and access the associated information at the same time. In addition to it,
users can associate information to specified regions on the 3D model. We pro-
posed some interactive tools which enabled users to define the specified regions
by easy mouse actions. We combine the Lazy Snapping and the conventional
lasso tool, and developed a more efficient selecting tool. We also proposed the
function for automatic definition of many specific regions by using drawings.

From experimental results, we observed the rendering capacity of our sys-
tem has enough efficiency to render huge 3D models with over ten million
polygons in real-time. Moreover, we observed that users can define specified
regions in less time and with less error by using our proposed selecting tool
than by other tools.

For future work, we hope to sophisticate the rendering and region selecting
algorithm which are more efficient and more robust. Finally, we hope to extend
this system to the network version. It is inefficient and unuseful for many users
to store huge amount of data on local disks. To solve the problem we hope to
develop a database system which enables users to share the huge 3D models
and related information with other people through internet.
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Chapter 22

VIRTUAL ASUKAKYO:
REAL-TIME SOFT SHADOWS IN MIXED
REALITY USING SHADOWING PLANES

Tetsuya Kakuta, Takeshi Oishi, and Katsushi Ikeuchi

Abstract This chapter introduces fast shading and shadowing method in Mixed Reality.
We create realistic soft shadows of virtual objects in a fast and efficient way us-
ing shadowing planes and a set of pre-rendered basis images. In the preparatory
stages, we generate shadowing planes from convex hulls of objects and render
basis images with basis lights which approximate the illumination of the real
world. We then synthesize basis images with luminance parameters and gen-
erate shadow images which correspond to the current illumination. Finally we
map shadow images onto shadowing planes and express soft shadows of ob-
jects in real-time. The proposed method can support both dynamic changes
of illumination and movements of user’s viewpoint. We successfully achieve
the consistency of illumination and improve the quality of synthesized image in
MR-systems.

1. Introduction

Mixed Reality (MR) systems allow us to see real scenes that contain computer-
generated virtual objects [1, 2]. Recently, outdoor MR applications which are
intended to represent lost cultural heritages with MR-systems have become
feasible. Considering the problem of cost and archaeological concerns, it is
preferable to reconstruct the cultural heritages with Computer Graphics (CG)
rather than rebuild them. Using the MR technology, we can show visitors
reconstructed CG models directly on historical sites. Furthermore, we can
easily correspond to the update of restoration plan by modifying CG models.
Against such a background, we started Virtual Asukakyo project to reconstruct
Asukakyo city, the earliest historical capital of Japan in 7th century.

For the seamless integration of virtual and real objects in MR, it is important
to achieve the consistency of illumination. First of all, the shading of the virtual
objects needs to match that of other objects in the environment. Also, the
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virtual objects must cast a correct shadow onto the real scene. However, it
is not easy to obtain correct illumination because real scenes usually include
both direct and indirect illumination distributed in a complex way. In addition,
computing global illumination and soft shadow in real-time is a difficult task.
Therefore the consistency of illumination in MR is a challenging problem.

There are some previous works related to the illumination in MR. Jacobs
and Loscos provide a detailed survey of illumination methods for MR[3]. They
classify the various techniques based on their input requirements of geometry
and radiance of real environment[4–8]. Most of these techniques are demon-
strated in indoor scenes and few of them are carried out at interactive up-
date rates. To simulate the naturally illuminated architectural environment,
Nimeroff et al. presented an efficient re-rendering method using pre-rendered
basis images[10]. Sato et al. applied this technique for MR and achieved a
fast image synthesis with natural shading[9]. Nevertheless, their method is
applicable only to still images and fixed viewpoints.

We propose a fast shadowing method for interactive MR applications. We
generate basis images to express the shadows of virtual objects and set them
onto other planate objects (hereafter called the shadowing planes) so that they
correspond to both the arbitrary viewpoints and changing illumination of the
real environment. The major contributions of this chapter are as follows:

Realistic soft shadows in real-time using pre-rendered basis images.

Model-based shadowing that allows user to move the viewpoint.

Hardware acceleration is available in the synthesis of basis images.

The proposed method is workable in real-time using the GPU(Graphics Pro-
cessing Unit) and supports the movement of user’s viewpoint. Therefore it is
applicable to interactive MR applications.

The rest of the chapter is organized as follows. In section 2, we explain how
to generate shadowing planes and basis images. In section 3, we describe the
real-time shadowing process using pre-rendered basis images and shadowing
planes. In section 4, we show the experimental result and confirm the effec-
tiveness of our shadowing method. Then in section 5, we introduce the "Virtual
Asukakyo Project" which aims to reconstruct the ancient Asukakyo. Finally,
in section 6, we present concluding remarks.

2. Generation of Shadowing Planes and Basis Images

We propose the idea of shadowing planes to make the soft shadow possible
in MR application. Shadowing planes are planate objects set on the surface of
real and virtual objects in the scene. In order to express soft shadow in real-
time, we synthesize basis images and generate shadow images according to the
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illumination of the real scene. Then we map shadow images onto shadowing
planes and express simulated cast shadow on other objects. In this section, we
describe the process of generating shadowing planes and basis images in the
preprocessing stage.

2.1 Setting up of Shadowing Planes

We set up the shadowing planes on the surface of objects in the scene.
As shown in Figure22.1, each shadowing plane covers the surface of object
roughly, and is offset a little in the direction of a user’s viewpoint so as to
avoid the stitching or z-fighting of polygons. Therefore shadowing planes are
put between the objects and camera.

Figure 22.1. Mechanism of shadowing using shadowing plane.

Shadowing planes are generated from convex hulls of objects. In the sim-
ple scene, shadowing planes approximately correspond to the original objects.
Though in case of complicated scene, we need to divide the objects into some
clusters previously. Figure 22.2 shows the generating process of shadowing
planes from complex architectural model. We divide the object manually and
pick up shadowing planes from convex hulls of each clusters.

2.2 Approximation of the Illumination

In order to generate the basis images from shadowing planes, we approxi-
mate the illumination of the real scene by the number of basis lights.

First, we assume that the illumination in the scene is a hemispheric surface
light source as illustrated in Figure 22.3(a)[11]. In this model, we can compute
the irradiance E of the point A with whole surface light source as
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Figure 22.2. Generation of shadowing planes from a complicated model using convex hulls.
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Figure 22.3. Approximation of the illumination; (a) hemispheric surface light source; (b) area
lights on the face of a polyhedron; (c) rendering with directional lights; (d) generation of basis
images.



462 DIGITALLY ARCHIVING CULTURAL OBJECTS

E =
∫ π

−π

∫ π
2

0
L0(θi, φi) cos θi sinφidθidφi (22.1)

where L0(θi, φi) is the luminance per unit solid angle from the direction of
(θi, φi), and cos θi is the parameter which means the attenuation relating to the
direction of incidence.

Then we apply a polyhedron to this hemisphere, and approximate the sur-
face light source by the assembly of area lights located on the every face of
this polyhedron (Figure 22.3(b)). For the approximation, We use the geodesic
dome model which can divide the spheric surface into almost the same area.
In this chapter, we start from an icosahedron and divide it using the alternative
method[12]. Suppose the frequency of the division as f , the number of faces
n is,

n = 20f2 (22.2)

Using this n faces on the geodesic dome, we can sample the hemisphere by
almost the same solid angle(δω = 2π

n ).
Moreover, we approximate these area lights by the assembly of directional

lights, which are located at the center of each face of the polyhedron looking
toward point A (Figure 22.3(c)). The irradiance E of point A is represented
simply as:

E =
n∑
i=1

Li cos θi (22.3)

whereLi is the intensity of every directional lights. We use these directional
lights as the basis lights to render the basis images.

2.3 Generation of Basis Images

After setting up m shadowing planes P j(j = 1, 2, ...,m) and n direc-
tional lights Li(i = 1, 2, .., n), the virtual objects are rendered with each
light. Virtual cameras, which look towards each shadowing plane perpendic-
ularly, capture the shadows of virtual objects cast on the shadowing planes.
This rendering process is done off-line, so we can compute global illumi-
nation using radiosity method and the like. Finally, we obtain basis images
Ibj,i(j = 1, 2, ..., m, i = 1, 2, ..., n) with every shadowing planes and lights
(Figure 22.3(d)).
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3. Real-Time Shadowing Process

3.1 Acquiring the Luminance of the Scene

We obtain the information in the luminance of the scene with an omni-
directional image taken by a video camera with a fisheye lens. Then we project
the polyhedron noted above onto the omni-directional image, and compute the
sum total value of internal pixels per each triangular region (Figure 22.4(a)). At
this point, we bring in the luminance parameter S i(i = 1, 2, .., n) to represent
the radiance scale of each light source.

For the shading of virtual objects, we set six virtual directional lights in the
scene. The intensity of every light is determined by the parameter Si (Fig-
ure.22.4(b)). With that we can express correct shadings of virtual objects re-
sponding to the real scene.

Figure 22.4. Acquisition of the luminance; (a) omni-directional image of the real scene; (b)
distribution of lights in the scene.

3.2 Synthesis of Basis Images

Meanwhile, we compute the linear combination of basis images Ib j,i with
Si as shown in Figure 22.5.

Isumj =
n∑
i=1

Si × Ibj,i (22.4)

Asumj =
n∑
i=1

Si × aj,i (22.5)
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Figure 22.5. The linear combination of luminance parameters and basis images

where Isumj is the synthesized soft shadow image, a j,i make up the area
of remaining unaffected by any shadow of virtual objects in basis images, and
Asumj shows the sum total of no shadowing area so that the ratio of Isum j

and Asumj represent the effect of shadows of virtual objects.

3.3 Hardware Acceleration

Note that the computation of linear combination of basis images and lu-
minance parameters is executable rapidly by recent GPU. Figure 22.6 shows
the computation process of the linear combination explained in previous sec-
tion in the fragment shader. Using multiple texture unit in GPU and assigning
grayscale basis images to each RGBA channel, we can compute the linear sum
of basis images and luminance parameter efficiently and execute it in real-time.

3.4 Mapping Shadow Images onto Shadowing Planes

Finally, we superimpose virtual objects onto a real image. We set soft
shadow images synthesized from basis images onto shadowing planes as an
alpha texture. Then we render the virtual scene and synthesize it with the real
scene. Virtual objects are properly shaded with light sources responding to the
illumination of the real scene.

The shadowing planes can represent simulated shadows of virtual objects
over both the real image and objects themselves. And also, they can express
the shadows on virtual objects cast by real objects using basis images which
store shadows generated from objects corresponding to the real scene.

4. Experimental Result

In this section, we explain the experimental result in both an indoor and
outdoor scene. In order to confirm the effect of our shadowing method, we
superimpose the virtual objects onto a real image using a video see-through
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Figure 22.6. Synthesize of basis images using fragment shader.

head mounted display. We compare two synthesized images, one is a simple
synthesized image which exclude the consistency of illumination, and another
is a improved synthesized image in which we apply the proposed shadowing
method. At first, we describe the component of our MR-system. Then we show
the experimental result in an indoor and outdoor scene.

4.1 MR-System

Our system is mainly based on Canon’s MR Platform system [13], which
includes a video see-through head mounted display. We also used the Polhe-
mus’s Fastrak, six degree-of-freedom (DOF) electromagnetic tracking sensor,
for the alignment of camera position and rotation to the real image. In the ex-
periment to be described later, we use Windows PC (2.40GHz CoreTM 2 Duo
E6600 CPU, 1024MB RAM, nVIDIA GeForce7950GT GPU). The appearance
of our equipment is shown in Figure.22.7, and the detail of our MR-system is
shown in Figure.22.8. As can be seen from the right side of Figure.22.7 and
left bottom corner of Figure.22.8, we add a CCD camera with a fisheye lens to
the MR Platform system in order to capture the illumination of the real scene.
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Figure 22.7. Appearance of our system

4.2 Result

Figure.22.9 shows the synthesized images of the indoor experiment. Note
that the ground surface beneath the virtual box on the right side of images, the
reality of synthesized image becomes better by adding the shadow of virtual
object. We can confirm the effect shadowing of virtual object.

Figure.22.10 shows the result of the outdoor experiment using an old Japanese
temple model. In Figure.22.10(b), we can see that the self-shadow of virtual
buildings is apparent on their walls and both the shading and the shadow of
virtual building are reasonably well matched to the real scene.

In the experiment of an outdoor scene, we used 1520 basis images generated
from 40 directional lights and 38 shadowing planes. The size of each basis
image is 128×128 pixels and the resolution of the synthesized image is 640×
480 pixels. We implemented the calculation of the linear combination of basis
images on the fragment shader to making use of GPU acceleration. The virtual
objects consist of 58500 polygons and we achieved about 18fps frame rate.

5. Virtual Asukakyo Project

We apply the shadowing method to an outdoor MR-application called "Vir-
tual Asukakyo Project". This project aims to restore the ancient Asukakyo vir-
tually and exhibit it in the Asuka village on-site. In this section, we introduce
the outline of the Virtual Asukakyo Project.

The Asukakyo was the oldest city of Japan. It was located in the Asuka
village, about 25 kilometers south of Nara city. Through excavations continued
in Asuka capital district over the past thirty years, it has become clear that the
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Figure 22.8. Detail of the MR-system

(a) (b)

Figure 22.9. Results for an indoor scene;

(a) before shadowing; (b) after shadowing.
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(a) (b)

Figure 22.10. Results for an outdoor scene;

(a) before shadowing; (b) after shadowing.

Figure 22.11. Concept of Virtual Asukakyo.
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political and cultural center of Japan existed in this area in the 7th century. The
Kawaradera temple, located in the southwest side of Asuakyo, was one of the
oldest temple like famous Horyuji. It is considered to have had its beginning
during the reign of Emperor Tenji and came to flourish as the national religion.
In the 8th century, Kawaradera declined because of the capital relocation to
Heijokyo in Nara, and was eventually burned down in the late Muromachi
period. Nowadays, the main buildings are lost and only the foundation and
cornerstones are left just like many of the ruins of wooden temples of those
days.

The Asukakyo receives much attention and many tourists visit the site, but
they are disappointed to find that so little remains of the original structure.
So we decided to begin the Virtual Asukakyo project, by which we intend
to virtually restore Asukakyo and Kawaradera temple to its original state. The
purpose of this project is not only to present a CG model of those days, but also
to exhibit the restoration model with MR-systems for tourists. In the process
of constructing the CG model of Asukakyo and Kawaradera, we referred to the
detailed restoration proposal based on the result of the excavation.

6. Conclusion

This chapter proposed a fast shading and shadowing method for MR. We
approximate the illumination in the scene and generate the basis images using
the shadowing planes. Soft shadow images, corresponding to the illumina-
tion of the real scene, are synthesized from basis images. Then we map these
shadow images onto shadowing planes as alpha texture and express soft shad-
ows of virtual objects in real-time. Though the proposed method is applicable
only to static scene, it is effective for a specific application (e.g. MR-based
restoration of cultural heritages in outdoor scene). Our method can achieve the
consistency of illumination and improve the quality of synthesized image in
MR-systems. And we applied the method to an outdoor MR-application "Vir-
tual Asukakyo", in which we aim to reconstruct the ancient Asukakyo. Using
the MR technology, we can show visitors reconstructed CG models directly on
historical sites, and also we successfully improved the reality of synthesized
image with proposed shadowing method.
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Chapter 23

DIGITAL RESTORATION OF THE NARA GREAT
BUDDHA

Takeshi Oishi and Katsushi Ikeuchi

Abstract This chapter describes the attempt to digitally restore the original appearance
of cultural heritage objects. The chapter focuses on the Nara Great Buddha
statue in the Todaiji Temple, Japan. The Todaiji Temple has been destroyed
by natural and artificial disasters a number of times. The current building and
statue were rebuilt hundreds of years ago, but their shapes are different from the
original shapes. In order to recreate their original appearance, we have utilized
3D geometric models that are obtained from the current Buddha statue. We have
also recreated the appearance of buildings by using laser range sensors. The
original Great Buddha statue was reconstructed by morphing the model of the
current Great Buddha statue based on a literature survey. The Buddha’s Palace
was reconstructed by assembling partial 3D models of the other temple that was
constructed during the same period as the Todaiji temple. By combining the
original Buddha’s Palace and the original Buddha statue, we created the virtual
appearance of the Nara Great Buddha at the time it was created.

1. Introduction

Currently, a large number of cultural heritage objects around the world are
deteriorating or being destroyed because of natural weathering, disasters, and
civil wars. Among them, Japanese cultural heritage objects, in particular, are
vulnerable to fires and other natural disasters because most of them were con-
structed of wood and paper.

One of the best ways to prevent these objects from loss and deterioration
is to digitally preserve them. Digital data of heritage objects can be obtained
by using modern computer vision techniques. Once these data have been ac-
quired, they can be preserved permanently, and then safely passed down to
future generations.

Another advantage of obtaining digital data of cultural heritage objects is
to modify those data and display the original appearance of the object. After
we obtain the precise geometric information about cultural heritage objects in
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Figure 23.1. Nara Great Buddha

their current state, we can modify the current data into a hypothesized original
state for multimedia contents. In order to demonstrate this ability, this chap-
ter describes an example of this type of modification: the restoration of the
Buddha Statue and its Buddha Palace (Fig. 23.1).

2. Toudaiji and the Great Buddha

The Nara Great Buddha is one of the most important heritage objects in
Japan. The Buddha Statue is sitting in the Buddha Palace at the Toudaiji Tem-
ple in Nara, Japan. The history of Toudaiji Temple starts in the year 728. A
temple called Kinshousenji was build by the Shomu emperor for his child who
had died. In 743, the emperor ordered the construction of the Buddha Statue.
Originally, the Buddha Statue was to be built inside a temple located in an
area which nowadays is known as Shiga Prefecture. However, forest fires and
earthquake had struck this area frequently, which forced the emperor to relo-
cate the construction site to Kinshousenji Temple in 745. Around this time,
this temple has started to be referred to as Toudaiji Temple. From 747, con-
struction of the Buddha Palace began alongside the Buddha Statue itself. Both
of these were completed in the year 751, and in 752, a ceremony was held to
celebrate the completion of the Buddha Statue.The original Buddha Statue is
made of bronze and coated with gold. In 1181, Toudaiji had been set a fire
during a civil war. Parts of the temple including the Buddha Palace had been
burned down during this war. Reconstruction was carried out, and was com-
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pleted in 1203. The temple was burned down again in 1567 due to another
civil war. The restoration of the Buddha Statue was completed in 1691, and
the reconstruction of the Buddha Palace took until 1709.

Although most parts on the Buddha Statue were either repaired or recon-
structed, there are some pieces which have not been destroyed. The height of
the Buddha Palace has not changed, but the width has been shrunk to about
two-thirds of the original size.

The remainder of this chapter is organized as follows. Section 2 and 3 re-
ports our efforts to restore the original appearance of the Buddha statue and the
Buddha palace using acquired digital data and a literature survey. Section 3 de-
scribes the analysis of the restored 3D model to demonstrate the effectiveness
of digital restoration. Section 4 summarizes this chapter.

3. Restoring the Buddha Statue

As the first step, we acquired the complete 3D mesh model of the Nara
Great Buddha Statue in its current state by using the geometrical modeling
techniques described in this book. We collected 114 partial mesh models using
CYRAX sensors. Those partial mesh models were aligned using the parallel
alignment algorithm[1] on a PC cluster and merged[2–4] into a unified mesh
model with 70M polygon.

We synthesized the original state by morphing the 3D mesh of the model
from this mesh model. From some literature inherited at various temples, we
knew the sizes of various face parts such as the nose and mouth. “Enryaku-so-
rokubun,” “Daibutsuden-hibun,” “Hichidaiji-nikki,” and “Gokokuji-honnsyoji-
engisho” are representative documents that contain those sizes. Unfortunately,
however, those numbers often contradict each other. Some researchers inves-
tigated which number is the most reliable one. We followed their method to
compare them and determined a common figure for each part.

Table 1 shows the obtained estimated and the current dimensions of various
face parts. Here, all the documents employ the unit called “shaku.” We in-
terpreted shaku as the tempyo shaku, and one shaku is assumed to be 0.2964
meters among the various interpretations of shaku. Notice that relatively large
differences exist in height measurements.

Using these data, we designed a two-step morphing algorithm. First, we
globally changed the scale of the whole portions (for example, Height when
sitting, Face Length, Nose Length); these are gradually modified. In the second
stage, vertices were moved one by one iteratively, similarly to the constraint
propagation algorithm, using smoothness and uniform constraints. The two-
stage morphing enabled us to obtain the complete model of the original Great
Buddha. Figure 23.2 shows the 3D models of the current (a) and the original
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Table 23.1. Current and estimated dimensions of various face parts

Parts Name Current (m) Original (m)
Height when sitting 14.98 15.85
Eye length 1.02 1.16
Face length 3.20 2.82
Ear length 2.54 2.52
Palm length 1.48 1.66
Foot length 3.74 3.56
Nose height 0.50 0.47
Mouth length 1.33 1.10

Great Buddha (Tempyou Buddha) (b). We can easily recognize that the original
Buddha is larger and rather thin.

Figure 23.2. Comparison in 3D models. (a) Current Buddha, (b) Original Buddha

4. Restoring the Buddha Palace

The Buddha Palace of the Toudaiji Temple was built during the same decades
as those of the Great Buddha (8th century). It was also rebuilt twice: in the
12th and 17th centuries. In the 12th century, Tenjiku architecture was imported
from China, and the Buddha Palace was rebuilt in a totally different architec-
ture style. The rebuilding in the 18 th century followed the same new style. As
a result, the style of the current Buddha Palace is entirely different from that of
the original building.
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Fortunately, the Toudaiji Temple has been displaying a miniature model of
the original hall, constructed for the Paris Expo in 1900, as shown in Figure
23.3. We digitized it using the Pulsteck TDS-1500 and scaled it up to the orig-
inal size as shown in Figure 23.5(a). The TDS-1500 can scan a range from 3.5
meters through 10 meters with the accuracy of 0.5mm to 5mm and the spatial
resolution of 420 X 280. We obtained 12 range images from various observa-
tion directions. As shown in Figure 23.5(b), due to the limits of the sensor’s
accuracy and constraints of observation directions, though the model provides
rough dimensions of locations of columns and walls, it does not provide a pre-
cise and accurate picture of the detailed parts.

According to Prof. Keisuke Fujii, who is a professor of architecture at the
University of Tokyo and one of the experts on building style in the era, the
Toudaiji and Toushoudaiji temples share a similar format. The main hall of the
Toushoudaiji Temple was also built during the same period (8 th century). We
have decided to combine the detailed part model of the Toushoudaiji Temple
with the rough whole model of the Todaiji temple.

We digitized various key parts of the main hall at Toushoudaiji. Using the
suggestions of Prof. Fujii, we chose 20 important parts of the main hall. Figure
23.5 shows 4 parts among 20 important parts. We employed Cyrax 2004 and
Pulsteck TDS-1500, which have a range from 0.5 meter through 1meter, with
resolution of 0.23 mm through 0.83 mm, to obtain 780 range images. Figure
23.6 shows the obtained range images of the detailed parts.

We pasted these partial range data of Touhoudaiji parts (Fig. 23.6) to the
scaled-up range data of the Toudaiji (Fig. 23.4(b)), using as a scale the aver-
age size difference between those temples, roughly 1 to 2.3[5]. Figure 23.7(a)
shows the original Buddha’s Palace digitally restored by our method. By com-
bining the original Buddha’s Palace and the original Buddha, we created the
virtual appearance of the Nara Buddha in the 8th century, as shown in Fig.
23.7(b-c). The virtual appearance of this and other historic objects can be used
for education about and promotion of our cultural heritage.

5. Analysis

As one of the demonstrations of utilizing digital restoration, we conducted
an experiment to determine the amount of gold used to plate the surface of
the Buddha. It is well known that the original Buddha was golden due to
gold plating of its surface. However, several contradictory numbers exist in
documents. For example, “Daibutu-den-hibun” and “Enryaku-sorokubun” say
it required 5412 ryou and 4187 ryou of gold, respectively, to cover the body of
the Buddha statue. Moreover, there were two interpretations of “ryou”; A large
ryou was 42 g, while a small ryou was 14 g. Thus, there are four interpretations
determining the amount of gold required.
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Figure 23.3. Miniature model of Buddha palace

Table 23.2. Four interpretations determining the amount of gold used

Document Written Interpretation
name amount in the

document
Large ryou
(42g)

Small ryou
(14g)

Daibutu-den-
hibun

5412 ryou 227 kg 76 kg

Enryaku-
sorokubun

4187 ryou 176 kg 59 kg
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Figure 23.4. 3D model acquired from the Miniature model.
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Figure 23.5. Key parts of the main hall at Tousho-daiji digitized

Figure 23.6. 3D models of those key parts
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In order to disambiguate this discussion, we used our restored digital model
of the Tempyou great Buddha Statue. The surface area, 597m2, is obtained
from the restored digital model by taking a summation of all surface areas of
triangular meshes. For comparison, the surface area of the current Buddha
is 556m2. From the documents, it is known that the amalgam method was
used to put gold over the Buddha’s surface. Usually, this method uses 6 ∼
10mg/cm2. This number was also confirmed by examining the thickness of
gold plate on various treasures stored in Sho-so-in. By multiplying the surface
area of Tempyo and the current Buddha with this number, we obtained the
gold amount as 36kg ∼60kg and 33kg ∼ 56kg. Those numbers indicate that
the interpretation of “enryaku-sorokubun” with a small ryou is most likely.

6. Conclusion

Digital restoration of lost cultural heritage objects has a great advantage
compared with other restoration methods such as physical construction of ac-
tual temples, because we can examine various hypotheses without any physical
changes or long building periods. We demonstrated the effectiveness of this
method through the restoration of the Nara Great Buddha Statue and the Bud-
dha Palace. We have also utilized this method to obtain important data such
as the probable amount of gold used to cover the body of the great Buddha.
These findings would play a significant role in clarifying debates concerning
ambiguous historical facts.
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Figure 23.7. Restored Nara Buddha
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19. Bayon Temple, Angkor Thom Cambodia. (February 2003 to December
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